H
haiquynh.710
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
BỘ GIÁO DỤC VÀ ĐÀO TẠO
HƯỚNG DẪN ÔN TẬP TỐT NGHIỆP THPT
CHO CÁC MÔN NĂM 2009
(Kèm theo văn bản số 2553/BGD ĐT/GDTrH ngày 27-3-2009)
MÔN TOÁN:
Năm 2009 là năm đầu tiên tất cả học sinh lớp 12 học theo Chương trình THPT mới; các thí sinh dự thi tốt nghiệp THPT năm 2009 sẽ thi theo chương trình này.
Để tạo điều kiện và giúp học sinh lớp 12 cũng như các thí sinh dự thi tốt nghiệp học tập và ôn luyện thi chủ động, tích cực, Bộ GD-ĐT hướng dẫn ôn tập môn Toán thi tốt nghiệp THPT năm học 2008-2009 như sau:
Việc ôn tập chuẩn bị kiến thức cho các kì thi cần phải bám sát chuẩn kiến thức, kỹ năng của Chương trình THPT và cấu trúc đề thi, hình thức thi tốt nghiệp THPT năm 2009.
Nội dung thi nằm trong chương trình THPT hiện hành, chủ yếu là chương trình lớp 12, cho tất cả các đối tượng thí sinh.
Thí sinh tự do phải thi cùng đề thi như thí sinh đang học lớp 12 THPT năm học 2008-2009; phải tự cập nhật, bổ sung kiến thức theo các hình thức khác nhau để chuẩn bị cho việc dự thi.
Nội dung ôn tập cho mọi đối tượng học sinh dự kỳ thi tốt nghiệp THPT năm học 2008-2009.
Phần Đại số và Giải tích gồm bốn chủ đề
1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số.
2. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit.
3. Nguyên hàm, tích phân và ứng dụng.
4. Số phức.
Phần Hình học gồm ba chủ đề:
1. Khối đa diện và thể tích khối đa diện.
2. Mặt cầu. Mặt trụ. Mặt nún.
3. Phương pháp tọa độ trong không gian.
Trong những nội dung, yêu cầu ôn luyện những kiến thức cơ bản cần nhớ, dạng bài toán cần luyện tập cho tất cả học sinh có phần những kiến thức và dạng bài toán in nghiêng và đậm là phần dành cho học sinh học theo chương trình nâng cao.
Chủ đề 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
Các kiến thức cơ bản cần nhớ:
1. Hàm số, tính đơn điệu của hàm số. Mối liên hệ giữa sự đồng biến, nghịch biến của một hàm số và dấu đạo hàm cấp một của nó.
2. Điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Các điều kiện đủ để có điểm cực trị của hàm số.
3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập hợp số.
4. Phép tịnh tiến hệ tọa độ và công thức đổi toạ độ qua phép tịnh tiến đó.
5. Đường tiệm cận đứng, đường tiệm cận ngang, tiệm cận xiên của đồ thị.
6. Các bước khảo sát hàm số và vẽ đồ thị hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm điểm uốn, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị. Giao điểm của hai đồ thị. Sự tiếp xúc của hai đường cong (điều kiện cần và đủ để hai đường cong tiếp xúc nhau).
Các dạng toán cần luyện tập:
1. Xét sự đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó. Sử dụng tính đơn điệu của hàm số để giải phương trình, bất phương trình hoặc chứng minh bất đẳng thức.
2. Tìm điểm cực trị của hàm số, tính giá trị cực đại giá trị cực tiểu của hàm số; tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, một khoảng. Ứng dụng vào việc giải phương trình, bất phương trình.
3. Vận dụng được phép tịnh tiến hệ tọa độ để biết được một số tính chất của đồ thị.
4. Tìm đường tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
5. Khảo sát và vẽ đồ thị của các hàm số:
y ax3 bx2 cx d (a 0),
y ax4 bx2 c (a 0),
và y (ac 0),
trong đó a, b, c, d là những số cho trước.
y , trong đó a, b, c, d, m, n là các số cho trước, am 0.
6. Dùng đồ thị hàm số để biện luận số nghiệm của một phương trình.
7. Viết phương trình tiếp tuyến của đồ thị hàm số (tại một điểm thuộc đồ thị hàm số, đi qua một điểm cho trước, biết hệ số góc); viết phương trình tiếp tuyến chung của hai đường cong tại điểm chung.
Chủ đề 2. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
Các kiến thức cơ bản cần nhớ:
1. Lũy thừa. Lũy thừa với số mũ nguyên của số thực; Lũy thừa với số mũ hữu tỉ và Lũy thừa với số số mũ thực của số thực dương (các khái niệm và các tính chất).
2. Lôgarit. Lôgarit cơ số a của một số dương (a > 0, a 1). Các tính chất cơ bản của lôgarit. Lôgarit thập phân, số e và lôgarit tự nhiên.
3. Hàm số lũy thừa. Hàm số mũ. Hàm số lôgarit (định nghĩa, tính chất, đạo hàm và đồ thị).
4. Phương trình, hệ phương trình, bất phương trình mũ và lôgarit.
Các dạng toán cần luyện tập:
1. Dùng các tính chất của lũy thừa để đơn giản biểu thức, so sánh những biểu thức có chứa lũy thừa.
2. Dùng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản.
3. Áp dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit.
4. Áp dụng tính chất của các hàm số mũ, hàm số lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit.
5. Vẽ đồ thị các hàm số luỹ thừa, hàm số mũ, hàm số lôgarit.
6. Tính đạo hàm các hàm số . Tính đạo hàm các hàm số luỹ thừa, mũ, lôgarit và hàm số hợp của chúng.
7. Giải một số phương trình, bất phương trình mũ đơn giản bằng các phương pháp: phương pháp đưa về lũy thừa cùng cơ số, phương pháp lôgarit hóa, phương pháp dùng ẩn số phụ, phương pháp sử dụng tính chất của hàm số.
8. Giải một số phương trình, bất phương trình lôgarit đơn giản bằng các phương pháp: phương pháp đưa về lôgarit cùng cơ số, phương pháp mũ hóa, phương pháp dùng ẩn số phụ, phương pháp sử dụng tính chất của hàm số.
9. Giải một số hệ phương trình mũ, lôgarit đơn giản.
HƯỚNG DẪN ÔN TẬP TỐT NGHIỆP THPT
CHO CÁC MÔN NĂM 2009
(Kèm theo văn bản số 2553/BGD ĐT/GDTrH ngày 27-3-2009)
MÔN TOÁN:
Năm 2009 là năm đầu tiên tất cả học sinh lớp 12 học theo Chương trình THPT mới; các thí sinh dự thi tốt nghiệp THPT năm 2009 sẽ thi theo chương trình này.
Để tạo điều kiện và giúp học sinh lớp 12 cũng như các thí sinh dự thi tốt nghiệp học tập và ôn luyện thi chủ động, tích cực, Bộ GD-ĐT hướng dẫn ôn tập môn Toán thi tốt nghiệp THPT năm học 2008-2009 như sau:
Việc ôn tập chuẩn bị kiến thức cho các kì thi cần phải bám sát chuẩn kiến thức, kỹ năng của Chương trình THPT và cấu trúc đề thi, hình thức thi tốt nghiệp THPT năm 2009.
Nội dung thi nằm trong chương trình THPT hiện hành, chủ yếu là chương trình lớp 12, cho tất cả các đối tượng thí sinh.
Thí sinh tự do phải thi cùng đề thi như thí sinh đang học lớp 12 THPT năm học 2008-2009; phải tự cập nhật, bổ sung kiến thức theo các hình thức khác nhau để chuẩn bị cho việc dự thi.
Nội dung ôn tập cho mọi đối tượng học sinh dự kỳ thi tốt nghiệp THPT năm học 2008-2009.
Phần Đại số và Giải tích gồm bốn chủ đề
1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số.
2. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit.
3. Nguyên hàm, tích phân và ứng dụng.
4. Số phức.
Phần Hình học gồm ba chủ đề:
1. Khối đa diện và thể tích khối đa diện.
2. Mặt cầu. Mặt trụ. Mặt nún.
3. Phương pháp tọa độ trong không gian.
Trong những nội dung, yêu cầu ôn luyện những kiến thức cơ bản cần nhớ, dạng bài toán cần luyện tập cho tất cả học sinh có phần những kiến thức và dạng bài toán in nghiêng và đậm là phần dành cho học sinh học theo chương trình nâng cao.
Chủ đề 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
Các kiến thức cơ bản cần nhớ:
1. Hàm số, tính đơn điệu của hàm số. Mối liên hệ giữa sự đồng biến, nghịch biến của một hàm số và dấu đạo hàm cấp một của nó.
2. Điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Các điều kiện đủ để có điểm cực trị của hàm số.
3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập hợp số.
4. Phép tịnh tiến hệ tọa độ và công thức đổi toạ độ qua phép tịnh tiến đó.
5. Đường tiệm cận đứng, đường tiệm cận ngang, tiệm cận xiên của đồ thị.
6. Các bước khảo sát hàm số và vẽ đồ thị hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm điểm uốn, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị. Giao điểm của hai đồ thị. Sự tiếp xúc của hai đường cong (điều kiện cần và đủ để hai đường cong tiếp xúc nhau).
Các dạng toán cần luyện tập:
1. Xét sự đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó. Sử dụng tính đơn điệu của hàm số để giải phương trình, bất phương trình hoặc chứng minh bất đẳng thức.
2. Tìm điểm cực trị của hàm số, tính giá trị cực đại giá trị cực tiểu của hàm số; tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, một khoảng. Ứng dụng vào việc giải phương trình, bất phương trình.
3. Vận dụng được phép tịnh tiến hệ tọa độ để biết được một số tính chất của đồ thị.
4. Tìm đường tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
5. Khảo sát và vẽ đồ thị của các hàm số:
y ax3 bx2 cx d (a 0),
y ax4 bx2 c (a 0),
và y (ac 0),
trong đó a, b, c, d là những số cho trước.
y , trong đó a, b, c, d, m, n là các số cho trước, am 0.
6. Dùng đồ thị hàm số để biện luận số nghiệm của một phương trình.
7. Viết phương trình tiếp tuyến của đồ thị hàm số (tại một điểm thuộc đồ thị hàm số, đi qua một điểm cho trước, biết hệ số góc); viết phương trình tiếp tuyến chung của hai đường cong tại điểm chung.
Chủ đề 2. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
Các kiến thức cơ bản cần nhớ:
1. Lũy thừa. Lũy thừa với số mũ nguyên của số thực; Lũy thừa với số mũ hữu tỉ và Lũy thừa với số số mũ thực của số thực dương (các khái niệm và các tính chất).
2. Lôgarit. Lôgarit cơ số a của một số dương (a > 0, a 1). Các tính chất cơ bản của lôgarit. Lôgarit thập phân, số e và lôgarit tự nhiên.
3. Hàm số lũy thừa. Hàm số mũ. Hàm số lôgarit (định nghĩa, tính chất, đạo hàm và đồ thị).
4. Phương trình, hệ phương trình, bất phương trình mũ và lôgarit.
Các dạng toán cần luyện tập:
1. Dùng các tính chất của lũy thừa để đơn giản biểu thức, so sánh những biểu thức có chứa lũy thừa.
2. Dùng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản.
3. Áp dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit.
4. Áp dụng tính chất của các hàm số mũ, hàm số lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit.
5. Vẽ đồ thị các hàm số luỹ thừa, hàm số mũ, hàm số lôgarit.
6. Tính đạo hàm các hàm số . Tính đạo hàm các hàm số luỹ thừa, mũ, lôgarit và hàm số hợp của chúng.
7. Giải một số phương trình, bất phương trình mũ đơn giản bằng các phương pháp: phương pháp đưa về lũy thừa cùng cơ số, phương pháp lôgarit hóa, phương pháp dùng ẩn số phụ, phương pháp sử dụng tính chất của hàm số.
8. Giải một số phương trình, bất phương trình lôgarit đơn giản bằng các phương pháp: phương pháp đưa về lôgarit cùng cơ số, phương pháp mũ hóa, phương pháp dùng ẩn số phụ, phương pháp sử dụng tính chất của hàm số.
9. Giải một số hệ phương trình mũ, lôgarit đơn giản.