[toán 12] một bài pt mũ

P

potter.2008

[tex] ( \sqrt {6-\sqrt{35}} )^x + ( \sqrt {6+\sqrt{35}})^x = 12 [/tex]
mong các bạn chỉ giúp cần gấp

ta thấy :

[TEX]\sqrt {6-\sqrt{35}}. \sqrt {6+\sqrt{35}}= 1 [/TEX]

Đặt [TEX]\sqrt {6-\sqrt{35}}=t \Rightarrow \sqrt {6+\sqrt{35}} = \frac{1}{t} [/TEX]

thế vào PT ta có : [TEX]t +\frac{1}{t} = 12 [/TEX] đến đây qui đồng lên rùi giải bình

thường :)
 
B

boybuidoi147

ta thấy :

[TEX]\sqrt {6-\sqrt{35}}. \sqrt {6+\sqrt{35}}= 1 [/TEX]

Đặt [TEX]\sqrt {6-\sqrt{35}}=t \Rightarrow \sqrt {6+\sqrt{35}} = \frac{1}{t} [/TEX]

thế vào PT ta có : [TEX]t +\frac{1}{t} = 12 [/TEX] đến đây qui đồng lên rùi giải bình

thường :)

[TEX]t +\frac{1}{t} = 12 [/TEX] như này thì sao tính x được anh ?
.............................
Em gà lắm :-S
 
G

giangln.thanglong11a6

[TEX]t+\frac1t=12 \Leftrightarrow t^2-12t+1=0 \Leftrightarrow \left[t=\sqrt{6+\sqrt{35}}\\t=\sqrt{6-\sqrt{35}}[/TEX]

Từ đó suy ra [TEX]x= \pm 1[/TEX]
 
C

cobehieuhoc

ôch

ơ. Tớ nghĩ là phải đặt . Sau khi giải phương trình t xong, thì so sánh điều kiện trên chứ!!!

rõ ràng t=[tex]\ sqrt{6-[tex]\sqrt{35}[/tex]}[tex] nghĩa là t khác 0 ruj m0[/tex]
 
Last edited by a moderator:
Top Bottom