[Toán 12] Chứng minh bất đẳng thức.

V

vivietnam

Do[TEX] 0<a,b,c \leq1 \Rightarrow (1-a)(1-b) \geq 0\Rightarrow 1-a-b+ab\geq 0 \Rightarrow 1+ab\geq a+b\Rightarrow \frac{1}{ab}+1 \geq \frac{1}{a}+\frac{1}{b}[/TEX]
Tương tự ta có
[TEX]\frac{1}{bc}+1\geq\frac{1}{b}+\frac{1}{c}[/TEX]
[TEX]\frac{1}{ac}+1\geq\frac{1}{a}+\frac{1}{c}[/TEX]

[TEX] \Rightarrow \frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc} \geq \frac{2}{a}+\frac{2}{b}+\frac{2}{c}-3[/TEX]
Ta có
[TEX]VT=(a+b+c)+\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ca} \geq (a+b+c)+ (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-3\geq3(\sqrt[3]{abc}+\frac{1}{\sqrt[3]{abc}})+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-3 \geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3[/TEX]
 
Top Bottom