2 .sin³(x+pi/4) = 2sinx
căn 2 .[sinx.cos (pi/4) + cosx.sin (pi/4)]³ = 2sinx
căn 2 .[√2 /2 .sinx. + √2 /2 .cosx]³ = 2sinx
=> 1/2 .(sinx + cosx)³ = 2sinx
=> (sinx + cosx).(sinx. + cosx)² = 4sinx
=> (sinx + cosx).(1 + 2sinx.cosx) = 4sinx
=> - 3sinx + cosx + 2sin²x.cosx + 2sinx.cos²x = 0
=>- 3sinx + cosx + 2sin²x.cosx + 2sinx.(1 - sin²x) = 0
=> - sinx + cosx + 2sin²x.cosx - 2sin³x = 0
=> cosx - sinx + 2sin²x.(cosx - sinx) = 0
=> (cosx - sinx) (1 + 2sin²x) = 0
=> cosx - sinx = 0 hoặc 1 + 2sin²x = 0 (loại)
=> cosx = cos(pi/2 - x)