[toán 11] @@

N

newstarinsky

$3)4cos(x-\dfrac{\pi}{4}).cos(x+\dfrac{\pi}{4})(sin^6x+cos^6x)=sin(x-\dfrac{\pi}{4}).sin(x+\dfrac{\pi}{4})\\
\Leftrightarrow 4[cos2x+cos\dfrac{\pi}{2}][(sin^2x+cos^2x)(sin^4x-sin^2x.cos^2x+cos^4x)]=cos\dfrac{\pi}{2}-cos2x\\
\Leftrightarrow 4cos2x[(sin^2x+cos^2x)^2-3sin^2x.cos^2x]=-cos2x\\
\Leftrightarrow cos2x(4-3sin^22x+1)=0\\
\Leftrightarrow cos2x(5-3sin^22x)=0\\

1)(cos2x-cos4x)^2=6+2sin3x\\
\Leftrightarrow 4sin^23x.sin^2x=6+2sin3x$

Ta có $sin^2x.sin^23x\leq 1\Rightarrow VT\leq 4$

$sin3x\geq -1\Rightarrow VP\geq 4$
Nên PT đúng khi $\begin{cases} sin3x=-1\\ sin^23x.sin^2x=1\end{cases}\\
\Leftrightarrow sinx=1$
 
Last edited by a moderator:
Top Bottom