[Toán 11]Toán cấp số cộng

S

sutu_leo

Ta có 5[TEX]S_n[/TEX] = [TEX]5^2+3.5^3+5.5^4+......+(2n-3).5^n+(2n-1).5^n^+^1[/TEX]
\Rightarrow-4Sn=5+(2n-1).[TEX]5^n^+^1[/TEX]+2.([TEX]5^2+5^3+.....+5^n[/TEX])
\Rightarrow-4Sn= 5+(2n-1).[TEX]5^n^+^1[/TEX]+2.[[TEX]\frac{(5^2+5^n).(n-2)}{2}[/TEX]]
Từ đó ta tính tiếp được giá trị của [TEX]S_n[/TEX] :khi (196):
 
H

hoaseru

bạn ơi sai rồi
hướng làm thi đúng nhưng mà
(2n-1).5^n phải là dấu trừ chứ
Sn-5Sn ma`
 
Last edited by a moderator:
B

bupbexulanxang

tính tổng
[tex]S_n=1.5+3.5^2+.....+(2n-1)5^n[/tex]
Giúp tớ nhanh với:D
ư
Biết làm rùi sao còn nói người khác giúp vậy.


[TEX]S_n=1.5+3.5^2+5.5^3.....+(2n-1)5^n[/TEX]
[TEX]5S_n=5^2+3.5^3+5.5^4+...+(2n-3).5^n+(2n-1).5^{n+1}[/TEX]

[TEX]S_n-5S_n=5+3.5^2-5^2+5.5^3-3.5^3+...+(2n-1).5^n-(2n-3).5^n-(2n-1).5^{n+1}[/TEX]

-4S_n=[TEX]5+2(5^2+5^3+5^4+...+5^n)-(2n-1).5^{n+1}[/TEX]

-4S_n=[TEX]5+2.\frac{5^2(1-5^n)}{1-5}-(2n-1).5^{n+1}[/TEX]
 
Top Bottom