[toán 11] tổ hợp

E

eye_smile

1. Số hạng tổng quát:

$\dfrac{k.C_{20}^{k-1}}{A_{k}^{1}}=C_{20}^{k-1}$

\Rightarrow $S=C_{20}^{0}+C_{20}^{1}+...+C_{20}^{20}=2^{20}$

2.Do $C_{2000}^{k}=C_{2000}^{2000-k}$

nên:

$S=C_{2000}^{0}+2C_{2000}^{1}+...+1001C_{2000}^{1000}+1002C_{2000}^{999}+1003C_{2000}^{998}+...+2001C_{2000}^{0}$

$=2002(C_{2000}^{0}+C_{2000}^{1}+...+C_{2000}^{999})+1001C_{2000}^{1000}$

$=2002.\dfrac{(1+1)^{2000}-C_{2000}^{1000}}{2}+1001C_{2000}^{1000}=1001.2^{2000}$
 
Top Bottom