[Toán 11] Tìm giới hạn

N

newstarinsky

$1) \lim_{x\to 1}\dfrac{x(x^{99}-1)-(x-1)}{x(x^{49}-1)-(x-1)}$
$=\lim_{x\to 1}\dfrac{(x-1)[x(x^{98}+x^{97}+...+1)-1]}{(x-1)[x(x^{48}+x^{47}+...+1)-1]}$
$=\lim_{x\to 1}\dfrac{x(x^{98}+x^{97}+...+1)-1}{x(x^{48}+x^{47}+...+1)-1}$
$=\dfrac{99-1}{49-1}=\dfrac{49}{24}$

$2) \lim_{x\to 1}\dfrac{x-1+x^2-1+....+x^n-1}{(x-1)^2}\\
=\lim_{x\to 1}\dfrac{1+x+1+x^2+x+1+...+x^{n-1}+x^{n-2}+...+1}{x-1}\\
=+\infty $

$3) \lim_{x\to 1}\dfrac{x^{n+1}-x-n(x-1)}{(x-1)^2}\\
=\lim_{x\to 1}\dfrac{x(x-1)(x^{n-1}+x^{n-2}+..+1)-n(x-1)}{(x-1)^2}\\
=\lim_{x\to 1}\dfrac{x^n+x^{n-1}+..+x-n}{x-1}\\
=\lim_{x\to 1}\dfrac{x^n-1+x^{n-1}-1+..+x-1}{x-1}\\
=\lim_{x\to 1}(x^{n-1}+x^{n-2}+..+1+x^{n-2}+x^{n-3}+...+1+........+1)\\
=1+2+3+....+n\\
=\dfrac{n[2+(n-1).1]}{2}=\dfrac{n(n+1)}{2}$
 
Last edited by a moderator:
Top Bottom