Mã:
[TEX]lim\frac{(2n-3)^2(4n+7)^3}{(3n-4)^2(5n^2+1)}[/TEX]
[TEX]\lim_{x\to + \infty} \frac{n^2(2-\frac{3}{n})^2.n^3(4+\frac{7}{n})^3}{n^2(3-\frac{4}{n})^2.n^2(5+\frac{1}{n^2})^2}[/TEX]
[TEX]=\lim_{x\to + \infty} n.\frac{(2-\frac{3}{n})^2.(4+\frac{7}{n})^3}{(3-\frac{4}{n})^2.(5+\frac{1}{n^2})^2}[/TEX]
[TEX]\lim_{x\to + \infty} n = +\infty[/TEX] và [TEX]\lim_{x\to + \infty}\frac{(2-\frac{3}{n})^2.(4+\frac{7}{n})}{(3-\frac{4}{n})^2.(5+\frac{1}{n^2})} = \frac{256}{225} > 0[/TEX]
Nên [TEX]\lim_{x\to + \infty} n.\frac{(2-\frac{3}{n})^2.(4+\frac{7}{n})^3}{(3-\frac{4}{n})^2.(5+\frac{1}{n^2})^2}[/TEX] = +\infty hay [TEX]\lim_{x\to + \infty} \frac{n^2(2-\frac{3}{n})^2.n^3(4+\frac{7}{n})^3}{n^2(3-\frac{4}{n})^2.n^2(5+\frac{1}{n^2})^2}[/TEX] = +\infty
Mã:
[TEX]lim\frac{(-3)^n+5^n}{(-3)^{n+1}+5^{n+1}}[/TEX]
[TEX]\lim_{x\to + \infty}\frac{(\frac{-3}{5})^n.+1}{(\frac{-3}{5})^n.(-3)+5}[/TEX] = [TEX]\frac{1}{5}[/TEX]
Chúc học tốt.