[toán 11] PTLG 3

N

nguyenbahiep1

câu 4

[TEX]1 + (sin2x+cos2x)( 1 - sin2x.cos2x) - 3sin2x.cos2x = 0 \\ u = sin2x+cos2x \\ dk : |u| \leq \sqrt{2}\\ 1 + u ( 1 - \frac{u^2-1}{2}) - \frac{3}{2}.(u^2-1) = 0 \\ u^3 +3u^2 -3u +5 = 0 [/TEX]
 
N

newstarinsky

1)ĐK............
$cot^2x-tan^2x=32cos^32x\\
\Leftrightarrow \dfrac{cos^4x-sin^4x}{sin^2x.cos^2x}=32cos^32x\\
\Leftrightarrow \dfrac{4cos2x}{sin^22x}=32cos^32x\\
\Leftrightarrow cos2x(1-8sin^22x.cos^22x)=0\\
\Leftrightarrow cos2x(4sin^24x-1)=0$

2)ĐK.............
$sin^2x.tanx+cos^2x.cotx=1+tanx+cotx+sin2x\\
\Leftrightarrow \dfrac{sin^4x+cos^4x}{sinx.cosx}=(sinx+cosx)^2+
\dfrac{sin^2x+cos^2x}{sinx.cosx}\\
\Leftrightarrow \dfrac{2(sin^2x+cos^2x)^2-sin^22x}{sin2x}=1+\dfrac{2}{sin2x}\\
\Leftrightarrow 2-sin^22x=sin2x+2\\
\Leftrightarrow sin2x(sin2x+1)=0$

3)ĐK .........
$(\sqrt{1-cosx}+\sqrt{cosx}).cos2x=sin2x.cos2x\\
\Leftrightarrow cos2x(\sqrt{1-cosx}+\sqrt{cosx}-sin2x)=0$
GPT trong ngoặc
$\sqrt{1-cosx}+\sqrt{cosx}=sin2x$
ĐK $ sin2x\geq 0\\cosx\geq 0$
PT tương đương
$1+2\sqrt{cosx(1-cosx)}=sin^22x\\
\Leftrightarrow 2\sqrt{cosx(1-cosx)}=-cos^22x$
$VT\geq 0\\VP\leq 0$
Dấu bằng xảy ra khi
$ \begin{cases} cosx(1-cosx)=0 \\cos2x=0\end{cases}$(vô nghiệm)
 
  • Like
Reactions: tanhcpvm
N

nguyen_van_ba

Câu 1:Bạn tự đặt điều kiện nhé.

$\dfrac{\cot ^{2}x-\tan ^{2}x}{\cos 2x}=32\cos ^{2}2x$

\Leftrightarrow $\dfrac{\dfrac{\cos ^{2}x}{\sin ^{2}x}-\dfrac{\sin ^{2}x}{\cos ^{2}x}}{\cos 2x}=32\cos ^{2}2x$

\Leftrightarrow $\dfrac{\cos ^{4}x-\sin ^{4}x}{\cos 2x\sin ^{2}x\cos ^{2}x}=32\cos ^{2}2x$

\Leftrightarrow $\dfrac{(\cos ^{2}x-\sin ^{2}x)(\cos ^{2}x+\sin ^{2}x)}{\cos 2x\sin ^{2}x\cos ^{2}x}=32\cos ^{2}2x $

\Leftrightarrow $\dfrac{\cos ^{2}x-\sin ^{2}x}{\cos 2x\sin ^{2}x\cos ^{2}x}=32\cos ^{2}2x$

\Leftrightarrow $\dfrac{\cos 2x}{\cos 2x\sin ^{2}x\cos ^{2}x}=32\cos ^{2}2x$

\Leftrightarrow $\dfrac{1}{\sin ^{2}x\cos ^{2}x}=32\cos ^{2}2x$

\Leftrightarrow $8\cos ^{2}2x.\sin ^{2}2x=1 $

\Leftrightarrow $2\sin ^{2}4x=1 $

\Leftrightarrow $\sin 4x=\pm \dfrac{1}{\sqrt{2}}$
 
Top Bottom