[Toán 11] Phương trình lượng giác.

K

kittybabykut3_97

Last edited by a moderator:
S

sasani

[TEX]1, cos^2x+cos2x=0 \\ cos^2x + 2cosx - 1 = 0 [/TEX]

=> Phương trình bậc hai ẩn cosx.
Câu 2 tương tự.
 
T

tranvanhung7997

1, $cos^2 x + cos 2x = 0$ <=> $cos^2 x + 2 cos^2 x - 1 = 0$
<=> $3 cos^2 x = 1$ <=> $cos x = \dfrac{1}{\sqrt[]{3}}$ hoặc $cos x = - \dfrac{1}{\sqrt[]{3}}$ ............

2, $2 cos^2 x - 3 cos 2x = 4$ <=> $2 cos^2 x - 1 - 3 cos 2x = 3$
<=> $cos 2x - 3 cos 2x = 3$ <=> $cos 2x = - \dfrac{3}{2}$............

3, $sin^6 x + cos^6 x = cos 4x$
<=> $(sin^2 x + cos^2 x)^3 - 3 sin^2x cos^2 x (sin^2 x + cos^2 x) = cos 4x$
<=> $1 - 3.(sin x cos x)^2 = cos 4x$
<=> $4 - 3. (2 sin x cos x)^2 = 4 cos 4x$
<=> $4 - 3 sin^2 2x = 4 ( 1 - 2 sin^2 2x)$
<=> $5sin^2 2x = 0$ <=> $sin 2x = 0$...........
 
C

connhikhuc

giải các phương trình
1, cos^2x+cos2x=0
2, 2cos^2x-3cos2x=4
3, sin^6x+cos^6x=cos4x/:)

1) ta có:

[TEX]cos^2 x+2cos^2 x-1 = 0[/TEX]

\Leftrightarrow [TEX]3cos^2 x = 1[/TEX]

\Rightarrow [TEX]cos^2 x = \frac{1}{3}[/TEX]

tự giải

2) ta có:

[TEX]2cos^2 x-3(2cos^2 x-1)=4[/TEX]

\Leftrightarrow [TEX](-4cos^2 x) = 0[/TEX]

\Rightarrow [TEX]cos^2 x = 0[/TEX]

tự giải

3) ta có:

[TEX]sin^6 x+cos^6 x = cos4x[/TEX]

\Leftrightarrow [TEX](sin^2 x+cos^2 x)^3 - 3sin^2 x.cos^2 x.(sin^2 x+cos^2 x)-cos4x = 0[/TEX]

\Leftrightarrow [TEX]1-3sin^2 x.cos^2 x-cos4x = 0[/TEX]

\Leftrightarrow [TEX]1- \frac{3}{4}sin^2 2x-cos4x = 0[/TEX]

\Leftrightarrow [TEX]1- \frac{3}{8}(1-cos4x)-cos4x = 0[/TEX]

\Leftrightarrow [TEX]\frac{3}{8}cos4x-cos4x+\frac{5}{8} = 0[/TEX]

\Leftrightarrow [TEX] (-\frac{5}{8}cos4x)+\frac{5}{8} = 0[/TEX]

\Leftrightarrow [TEX] cos4x = 1 [/TEX]

tự giải
 
Last edited by a moderator:
Top Bottom