[ toán 11] phương trình lượng giác

L

luantran1997

\căn3 (2cos^2 x + cos x -1) + sinx (3 - 2cosx) = 0

[tex]\sqrt{3}(2cos^2 x + cos x -1) + sinx (3 - 2cosx) = 0 [/tex]
[tex] \Leftrightarrow \sqrt{3} (1 + cos(2x) + cos x -1) + sinx (3 - 2cosx) = 0 [/tex]
[tex] \Leftrightarrow \sqrt{3} cos(2x) + \sqrt{3}cos x + 3sinx - sin(2x) = 0 [/tex]
[tex] \Leftrightarrow (\sqrt{3} cos(2x) - sin(2x)) + \sqrt{3}(cos x + \sqrt{3}sinx) = 0 [/tex]
[tex] \Leftrightarrow (\frac{\sqrt{3}}{2}cos(2x) - \frac{1}{2}sin(2x)) + \sqrt{3} (\frac{\sqrt{3}}{2}sin(x) +\frac{1}{2}cos(x)) = 0 [/tex]
[tex] \Leftrightarrow sin( \frac{pi}{3} - 2x) + \sqrt{3}cos(\frac{pi}{3} - x)) = 0 [/tex]
[tex] \Leftrightarrow 2sin(\frac{pi}{6}-x)cos(\frac{pi}{6}-x) + \sqrt{3}cos(\frac{pi}{3} - x)) = 0 [/tex]
[tex] \Leftrightarrow 2cos(\frac{3pi}{2}-x)cos(\frac{pi}{6}-x) + \sqrt{3}cos(\frac{pi}{3} - x)) = 0 [/tex]
bạn nhớ là [tex] cos(\frac{3pi}{2}-x) = cos(\frac{pi}{3} - x)) [/tex]
[tex] \Leftrightarrow cos(\frac{3pi}{2}-x) = - cos(\frac{pi}{3} - x)) [/tex] (ptlg căn bản)
[tex] \Leftrightarrow 2cos(\frac{pi}{6}-x) + \sqrt{3} = 0 [/tex]
[tex] \Leftrightarrow cos(\frac{pi}{6}-x) + \sqrt{3} = -\frac{\sqrt{3}}{2} = sin(-\frac{pi}{6}) [/tex]
( ptlg căn bản).
 
Last edited by a moderator:
Top Bottom