[Toán 11] Phương trình lượng giác

N

nguyenbahiep1

a)
[TEX]cos^3x - 2cos^5x + sin^3 x - 2sin^5 x = 0\\ cos^3(1-2.cos^2x) + sin^3x(1 - 2sin^2x) \\ -cos^3x.cos2x + sin^3x.cos2x = 0 \\ cos2x = 0 \Rightarrow x = \frac{\pi}{4}+ \frac{k.\pi}{2}\\ sin^3x -cos^3x = 0 \\ tan^3x = 1\\ tanx = 1 \Rightarrow x = \frac{\pi}{4} + k.\pi [/TEX]

b)

[TEX](\frac{\sqrt{2}}{2}(sin x - cosx))^3 = \sqrt{2}.sinx \\ \frac{1}{4}(sinx-cosx)^3 = sin x \\ sin^3x -3.sin^2xcosx + 3sinx.cos^2x -cos^3x - 4sinx = 0 \\ cosx \not= 0 \\ tan^3x -3tan^2x + 3tanx -1 -4tanx(1+tan^2x) = 0 \\ u = tanx \\ u^3 -3u^2 +3u -1 - 4u -4u^3 = 0 \\ -3u^3 -3u^2-u -1 = 0 \\ 3u^3 +3u^2 +u +1 = 0 \\ (u+1)(3.u^2+1) = 0 \\ u = -1 \Rightarrow tan x = -1 \Rightarrow x = -\frac{\pi}{4} + k.\pi[/TEX]
 
Last edited by a moderator:
Top Bottom