1.
[TEX]\left{ u_o = 0 \\ u_{n+1} = u_n + 2n.3^n [/TEX]
Nghiệm tổng quát : [TEX]\lambda =1 \not= 3 \Rightarrow \left{ \hat{u_n} = C \\ u_n* = (an+b).3^n [/TEX].
[TEX]u_{n+1}* = u_n* + 2n.3^n \Rightarrow (an + a+ b ).3^{n+1} = (an + b).3^n + 2n. 3^n[/TEX]
[TEX]\Rightarrow \left{ 3a = a+ 2 \\ 3a+3b = b \right. \Rightarrow \left{ a = 1 \\ b=-\frac32 [/TEX]
[TEX]\Rightarrow u_n = \hat{u_n} + u_n* = (n-\frac32) .3^n + C . \\ Ma:\ u_0 = 0 \Rightarrow C= \frac32 \\ \Rightarrow u_n = (n-\frac32).3^n + 1 [/TEX]
2.
[TEX]\left{ u_o = 1 \\ u_{n+1} - 2u_n = (n^2+1).2^n [/TEX]
[TEX]\lambda = 2 \Rightarrow u_n = (an^3+ bn^2 + cn+d). 2^n [/TEX]
[TEX] u_0 = 1 \Rightarrow d = 1 \\ Lai \ co: [/TEX]
3.
[TEX]\left{ u_o = 1 \\ u_{n+1} - 2u_n = n + 3^n [/TEX]
[TEX]\lambda = 2 \not = 3 \Rightarrow \hat{u_n} = C.2^n[/TEX]
[TEX]u_n*_1 = an + b (do \ \lambda \not=1 ) \Rightarrow (a(n+1) + b) - 2an - 2b = n \Leftrightarrow \left{ a=-1 \\ b = -1 \right. \Rightarrow u_n* _1 = -n-1 [/TEX]
[TEX]u_n* _2 = d. 3^n \Rightarrow d.3^{n+1} - 2d.3^n = 3^n \Leftrightarrow d =1 \Rightarrow u_n*_2 = 3^n[/TEX]
[TEX]\Rightarrow u_n = C.2^n + 3^n -n - 1 \\ Ma: \ u_0 = 1 \Rightarrow C= 1 [/TEX]
Vậy : [TEX]u_n = 2^n + 3^n - n - 1[/TEX]