[toán 11] lượng giác

N

newstarinsky

1) ĐK $sin2x\not=0$
PT tương đương
$ cos^4x+sin^4x+\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}+4=12+
\dfrac{1}{2}sinx\\
\Leftrightarrow cos^4x+sin^4x+\dfrac{cos^4x+sin^4x}{sin^4x.cos^4x}=12+
\dfrac{1}{2}sinx\\
\Leftrightarrow (cos^4x+sin^4x)(1+\dfrac{1}{sin^4x.cos^4x})+4=12+
\dfrac{1}{2}sinx\\
\Leftrightarrow [(cos^2x+sin^2x)^2-2sin^2x.cos^2x](1+\dfrac{16}{sin^42x})+4=12+\dfrac{1}{2}sinx\\
\Leftrightarrow (1-\dfrac{1}{2}sin^22x)(1+\dfrac{16}{sin^42x})+4=12+
\dfrac{1}{2}sinx$

Ta có $sinx\leq 1\Rightarrow VP\leq 12+\dfrac{1}{2}=\dfrac{25}{12}$
Do $sin^22x\leq 1$nên $1-\dfrac{1}{2}sin^22x\geq \dfrac{1}{2}\\
\dfrac{16}{sin^42x}+1\geq 16+1=17$
Nên $VT\geq \dfrac{1}{2}.17+4=\dfrac{25}{2}$
Vậy PT đúng khi
$ \begin{cases} sin^22x=1 \\ sinx = 1 \end{cases}$(vô nghiệm )
Vây PT đã cho vô nghiệm
 
Top Bottom