[Toán 11] Lượng giác

N

ngocthao1995

Giải phương trình lượng giác.

[TEX](1+sin2x+cos2x)sin^2x=\sqrt{2} .sinx.sin2x[/TEX]

[TEX]\Leftrightarrow sin^2x(1+sin2x+cos2x)=\sqrt{2}sinx.2sinxcosx[/TEX]

[TEX]\Leftrightarrow 1+sin2x+cos2x=2\sqrt{2}cosx[/TEX]

[TEX]\Leftrightarrow 2sinxcosx+2cos^2x=2\sqrt{2}cosx[/TEX]

[TEX]\Leftrightarrow sinx+cosx=\sqrt{2}[/TEX]

........
[TEX](sin2x+cos2x).cosx+2cos2x-sinx=0[/TEX]

[TEX]\Leftrightarrow sin2xcosx+cos2xcosx+2cos2x-sinx=0[/TEX]

[TEX]\Leftrightarrow 2sinxcos^2x-sinx+cos2x(cosx+1)=0[/TEX]

[TEX]\Leftrightarrow sinx(2cos^2x-1)+cos2x(cosx+1)=0[/TEX]

[TEX]\Leftrightarrow sinxcos2x+cos2x(cosx+1)=0[/TEX]

[TEX]\Leftrightarrow cos2x(sinx+cosx+1)=0[/TEX]
........
 
Last edited by a moderator:
N

niemkieuloveahbu

[TEX](sin2x+cos2x).cosx+2cos2x-sinx=0[/TEX]

[TEX]\text{(sin2x+cos2x).cosx+2cos2x-sinx=0 \\ \Leftrightarrow 2sinxcos^2x-sinx+cos2x(cosx+2)=0 \\ \Leftrightarrow cos2x(sinx+cosx+2)=0\\ \Leftrightarrow cos2x=0 ( De thay sinx+cosx+2>0)\\ \Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2},k \in Z[/TEX]

[TEX](1+sin2x+cos2x)sin^2x=\sqrt{2}.sinx.sin2x[/TEX]

[TEX]\text{(1+sin2x+cos2x)sin^2x=\sqrt{2} .sinx.sin2x \\ \Leftrightarrow sin^2x(1+sin2x+cos2x-2\sqrt{2}cosx)=0 \\ \Leftrightarrow sin^2xcosx(cosx+sinx-\sqrt{2})=0 \\ \Leftrightarrow \[sin2x=0 \\cos(x-\frac{\pi}{4})=1\\}\\ \Leftrightarrow \[x=\frac{k\pi}{2}\\ x=\frac{\pi}{4} + k2\pi, k\in Z[/TEX]
 
Top Bottom