[toán 11] lượng giác 2

H

hoan1793

Câu 4 nhé bạn

1+3cosx+cos2x=cos3x+2sinxsin2x

=>1+3cosx+2cos^2_x=cos3x-cos3x+cosx

=>1+3cosx+2cos^2_x-cosx=0

=>2cox^2_x+2cosx+1=0

Đến đây bạn tự giải nhé :D
 
N

nguyenbahiep1

câu 4

[TEX] 1 + 3cosx + cos2x = cos3x + cosx - cos 3x \\ 1 + 2cosx + 2cos^2x-1= 0 \\ cos^2x+cosx = 0 \Rightarrow cosx = 0 \\ cosx = - 1[/TEX]
 
N

newstarinsky

2) ĐK........
Pt trở thành
$cos\dfrac{4x}{3}=cos^2\dfrac{6x}{3}$
Đặt $\dfrac{2x}{3}=u$
PT có dạng
$cos2u=cos^23u\\
\Leftrightarrow 2cos2u=1+cos6u\\
\Leftrightarrow 2cos2u=1+4cos^32u-3cos2u\\
\Leftrightarrow 4cos^32u-5cos2u+1=0$

1)ĐK.........
$cos^2\dfrac{x}{2}.(sin^2x-2)=(sin^2x-4cos^2\dfrac{x}{2})sin^2\dfrac{x}{2}\\
\Leftrightarrow (1+cosx)(sin^2x-2)=(sin^2x-2-2cosx).(1-cosx)\\
\Leftrightarrow (1+cosx)(1+cos^2x)=(1+2cosx+cos^2x)(1-cosx)=(1-cosx)(1+cosx)^2\\
\Leftrightarrow (1+cosx)[1+cos^2x-(1-cosx)(1+cosx)]=0\\
\Leftrightarrow (1+cosx)(1+cos^2x-1+cos^2x)=0\\
\Leftrightarrow cos^2x(1+cosx)=0$
 
Top Bottom