tim
[tex] \lim_{n\to vocuc } (sin^3 \frac{a}{3}+3sin^3 \frac{a}{3^2}+..+3^(n-1) sin^3 \frac{a}{3^n})[/tex]
Ta có:
[TEX]3^{k-1}sin^3 \frac{a}{3^k}=\frac{3^k}{4}sin(\frac{a}{3^k})-\frac{3^{k-1}}{4} sin(\frac{a}{3^{k-1}})[/TEX]
[TEX]\Rightarrow f(n)=sin^3 \frac{a}{3}+3sin^3 \frac{a}{3^2}+..+3^{n-1} sin^3 \frac{a}{3^n}[/TEX]
[TEX]=\frac{3}{4} sin(\frac{a}{3})-\frac{1}{4}sina+\frac{3^2}{4}sin(\frac{a}{3^2})-\frac{3}{4}sin(\frac{a}{3})+\frac{3^3}{4}sin(\frac{a}{3^4})-\frac{3^3}{4}sin(\frac{a}{3^3})+...+\frac{3^n}{4}sin(\frac{a}{3^n})-\frac{a^{n-1}}{4}sin(\frac{a}{3^{n-1}})[/TEX]
[TEX]=-\frac{1}{4}sina+\frac{3^n}{4}sin(\frac{a}{3^n})[/TEX]
[TEX]\Rightarrow \lim_{x\to \infty}f(n)=\lim_{x\to \infty}[-\frac{1}{4}sina+\frac{3^n}{4}sin(\frac{a}{3^n})]=-\frac{1}{4}sina[/TEX]
P/S: Không biết có nhầm ở đâu không nhỉ![Wink ;) ;)]()
![Wink ;) ;)]()
![Wink ;) ;)]()