1) CM: [TEX]C_{2n}^{0} + C_{2n}^{2}+ C_{2n}^4 + ...+ C_{2n}^{2n-2 }+ C_{2n}^{2n} = {2}^{2n-1}[/TEX]
2,[TEX]C_2n^1 + C_2n^3 +..+ C_2n^2n-1 = 2^2n-1[/TEX]
xết khai triển [TEX](1+x)^{2n} =C_{2n}^0 +C_{2n}^1x +...+C_{2n}^{2n}x^{2n}[/TEX]
thay x=1 vào\Rightarrow [TEX]C_{2n}^0 +C_{2n}^1+C_{2n}^2 +...+C_{2n}^{2n} =2^{2n}[/TEX](*)
xét khai triển [TEX](1-x)^{2n} =...[/TEX]
thay x=1 \Rightarrow[TEX]C_{2n}^0 -C_{2n}^1 +...+C_{2n}^{2n} =0[/TEX]
\Leftrightarrow[TEX]C_{2n}^0+C_{2n}+...+C_{2n}^{2n-2}+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+{C_{2n}^{2n-1}[/TEX]
thay vào (*) dc
[tex]2(C_{2n}^0+C_{2n}+...+C_{2n}^{2n-2}+C_{2n}^{2n})=(C_{2n}^1+C_{2n}^3+...+{C_{2n}^{2n-1})=2^{2n}[/tex]
ta có 1,[TEX]C_{2n}^{0} + C_{2n}^{2}+ C_{2n}^4 + ...+ C_{2n}^{2n-2 }+ C_{2n}^{2n} = {2}^{2n-1}[/TEX]
2, [TEX]C_2n^1 + C_2n^3 +..+ C_2n^2n-1 = 2^{2n}-1[/TEX]