[toán 11 ] giới hạn

N

ngomaithuy93

................n......... ................... m
lim ( ---------------- - ..... -------------
x->1 1- [TEX]x^n[/TEX]....................1- [TEX]x^m[/TEX]
[TEX] \lim_{x\to1}(\frac{n}{1-x^n}-\frac{m}{1-x^m}) [/TEX]

[TEX]= \lim_{x\to1}\frac{n-m-nx^m+mx^n}{(1-x^n)(1-x^m)}[/TEX]

[TEX] = \lim_{x\to1}\frac{\frac{n-m-nx^m+mx^n}{x-1}}{\frac{(1-x^n)(1-x^m)}{x-1}}[/TEX]
Ứng dụng đạo hàm cho dạng [TEX]\frac{0}{0}[/TEX]
 
Last edited by a moderator:
D

doremon.

[TEX] \lim_{x\to1}(\frac{n}{1-x^n}-\frac{m}{1-x^m}) [/TEX](*)

=[TEX]\lim_{x \to 1}(\frac{n}{1-x^n}-\frac{1}{1-x}+\frac{1}{1-x}-\frac{m}{1-x^m}) [/TEX]

Xét [TEX]\lim_{x \to 1}( \frac{n}{1-x^n}-\frac{1}{1-x}}[/TEX]

=[TEX]\lim_{x \to 1}[\frac{n-(1+x+x^2+.......+x^{n-1})}{1-n^2}][/TEX]

=[TEX]\lim_{x \to 1}[\frac{(1-x)+(1-x^2)+...+(1-x^{n-1})}{1-x^n}][/TEX]

=[TEX]\lim_{x \to 1}[\frac{1+(1+x)+(1+x+x^2)+......+(1+x+.x^{n-2})}{1+x+....+x^{n-1}[/TEX]

=[TEX]\frac{n-1}{2}[/TEX]

---> (*)=[TEX]\frac{n-1}{2}-\frac{m-1}{2}[/TEX]
 
Last edited by a moderator:
Top Bottom