[Toán 11 ]giới hạn VIP :D

0

0956007417

[TEX]\{ a_{n}+b_{n}.sqrt{2}=(2+sqrt{2})^{n}\\a_{n}-b_{n}.sqrt{2}=(2-sqrt{2})^{n}[/TEX]
[TEX]\Leftrightarrow \{ a_{n}=\frac{(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n}}{2}\\ b_{n}=\frac{(2+\sqrt{2})^{n}-(2-\sqrt{2})^{n}}{2\sqrt{2}}[/TEX]
Do đó:
[TEX]\lim\frac{a_n}{b_n}=\lim \sqrt{2}.\frac{(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n}}{(2+\sqrt{2})^{n}-(2-\sqrt{2})^{n}} =\sqrt{2}.\lim\frac{1+q^n}{1-q^n}[/TEX]
trong đó:
[TEX]q=\frac{2-sqrt{2}}{2+\sqrt{2}}=\frac{(2-\sqrt{2})(2+\sqrt{2})}{(2+\sqrt{2})^2}=\frac{1}{3+2\sqrt{2}} \Rightarrow 0 < q < 1 \Rightarrow \lim q^n=0 \Rightarrow \lim\frac{a_n}{b_n}=\sqrt{2}[/TEX]
 
Top Bottom