[Toán 11] Giới hạn của hàm số

N

newstarinsky

Bài 1

$I=\lim_{x\to 0} \dfrac{e^{\alpha.x}-1-e^{\beta.x}+1}{sin\alpha.x-sin\beta.x}$
$=\lim_{x\to 0} \dfrac{e^{\alpha.x}-1}{2cos(\dfrac{\alpha+\beta}{2}.x).sin(\dfrac{
\alpha-\beta}{2}.x)}
-
\lim_{x\to 0}\dfrac{e^{\beta.x}-1}{2cos(\dfrac{\alpha+\beta}{2}.x).sin(\dfrac{
\alpha-\beta}{2}.x)}$
$=I_1-I_2$

Ta có $\lim_{x\to 0}\dfrac{e^{\alpha.x}-1}{\alpha.x}=1\\
lim_{x\to 0} \dfrac{sin(\dfrac{\alpha-\beta}{2}.x)}{\dfrac{(\alpha-\beta)x}{2}}=1$

Nên $I_1=\dfrac{\alpha}{\alpha-\beta}\\
I_2=\dfrac{\beta}{\alpha-\beta}$

Vậy $I=I_1-I_2=1$
 
Last edited by a moderator:
Top Bottom