[Toán 11] Giải phương trình :)

P

patranopcop

Last edited by a moderator:
D

demon311

1)

$\dfrac{ n!-(n-1)!}{(n+1)!}=\dfrac{ 1}{6} \\
\leftrightarrow \dfrac{ n-1}{n(n+1)}=\dfrac{ 1}{6} \;\; \text{chia 2 vế cho }\; (n-1)! \\
\leftrightarrow n^2+n=6n-6 \\
\leftrightarrow n^2-5n+6=0 \\
\rightarrow \left[ \begin{array}{ll}
n=2 \\
n=3
\end{array} \right. $
 
D

demon311

2)

$P_n=n! $
a)

$VT=P_n-P_{n-1}=n!-(n-1)!=(n-1)!(n-1)=(n-1)P_{n-1}=VP$

b) Áp dụng kết quả câu a

$P_n-P_{n-1}=(n-1)P_{n-1} \\
P_{n-1}-P_{n-2}=(n-2)P_{n-2} \\
... \\
P_2-P_1=1.P_1 \\
\text{Cộng vế theo vế:} \\
P_n-P_1=1P_1+2P_2+...+(n-1)P_{n-1} \\
1+1P_1+2P_2+...+(n-1)P_{n-1}=P_n \;\; \text{(Chú ý:} P_1=1 \text{)}$
 
Top Bottom