[toán 11]giải phương trình lượng giác

Y

youaremysoul

Giải các phương trình lượng giác sau:
[TEX]a) {sin}^{4}x + {cos}^{4}x = \frac{1}{2}. sin2x b) cos2x + 2cosx = 2.{sin}^{2}\frac{x}{2}[/TEX]



a,
bạn chứng minh
$cos^4x + sin^4x = \dfrac{3}{4} + \dfrac{1}{4}cos4x$

pt \Leftrightarrow $\dfrac{3}{4} + \dfrac{1}{4}cos4x = \dfrac{1}{2}sin2x$

\Leftrightarrow $3 + cos4x = 2sin2x$

\Leftrightarrow $ -2sin^2x - 2sin2x + 4 = 0$

b,
pt \Leftrightarrow $cos2x + 2cosx = \dfrac{2(1 - cosx)}{2}$

\Leftrightarrow $2cos^2x - 1 + 2cosx = 1 - cosx$

\Leftrightarrow $2cos^2x + 3cosx - 2= 0$
 
H

huyentrang1996

{sin}^{4}x+{cos}^{4}x=\frac{1}{2}sin2x<br/>
Phân tích giúp mình ra cái
$sin^4x+cos^4x=\dfrac{1}{2}sin2x$
$\Leftrightarrow (sin^2x+cos^2x)^2-2sin^2xcos^2x=\dfrac{1}{2}sin2x$
$\Leftrightarrow 1-\dfrac{sin^22x}{2}=\dfrac{1}{2}sin2x$
$\Leftrightarrow sin^22x+sin2x-2=0$
 
Last edited by a moderator:
L

linhyenmob

i b)

b) cos2x+2cosx=2.sin2x
<=>2*cos^2 x-1+2*cos x=1-cos x
<=>2*cos^2 x+3*cos x-2=0
<=>cos x=1/2
cos x=-2 (L)
<=> cos x=cos(bi/3)
<=>x=bi/3+k2*bi
x=-bi/3+k2*bi
:khi (34):
 
Top Bottom