[ toán 11 ] các phương trình lượng giác khó

L

laughingoutloud

Last edited by a moderator:
N

nguyenbahiep1

\sqrt{3} cos x + sinx + \frac{6}{\sqrt{3} + sinx +1} =4


chắc đề như thế này



[TEX]\sqrt{3}cos x + sinx + \frac{6}{\sqrt{3}cos x + sinx+1} = 4 \\ \sqrt{3}cos x + sinx+1 + \frac{6}{\sqrt{3}cos x + sinx+1} = 5 \\ u = \sqrt{3}cos x + sinx+1 \\ u + \frac{6}{u} -5 = 0 \\ u^2 -5u +6 = 0 \\ u = 3 \Rightarrow \sqrt{3}cos x + sinx+1 = 3 \Rightarrow sin (x + \frac{\pi}{3}) = 1 \\ u = 2 \Rightarrow \sqrt{3}cos x + sinx+1 = 2 \Rightarrow sin (x + \frac{\pi}{3}) = \frac{1}{2}[/TEX]

c)

[TEX] TXD: cos2x + sin x \not= 0 \\ \frac{cosx -sin2x}{cos 2x + sin x} = \sqrt{3} \\ cosx -sin2x = \sqrt{3}cos2x + \sqrt{3}sinx \\ cosx - \sqrt{3}sin x = \sqrt{3}cos2x + sin2x \\ cos(x + \frac{\pi}{3}) = cos(2x- \frac{\pi}{6})[/TEX]
 
Last edited by a moderator:
N

newstarinsky

$b)cos2x-\sqrt{3}sin2x-\sqrt{3}sinx-cosx+4=0\\
\Leftrightarrow cos(2x+\dfrac{\pi}{3})-cos(x-\dfrac{\pi}{3})+2=0\\
\Leftrightarrow -cos(\pi-2x-\dfrac{\pi}{3})-cos(x-\dfrac{\pi}{3})=-2\\
\Leftrightarrow cos2(x-\dfrac{\pi}{3})+cos(x-\dfrac{\pi}{3})=2\\
\Leftrightarrow 2cos^2(x-\dfrac{\pi}{3})-1+cos(x-\dfrac{\pi}{3})=2\\
\Leftrightarrow 2cos^2(x-\dfrac{\pi}{3})+cos(x-\dfrac{\pi}{3})-3=0$
Ok nhé

$d)sin^3(x-\dfrac{\pi}{4})=\sqrt{2}sinx$
Đặt $u=x-\dfrac{\pi}{4}$
PT trở thành
$sin^3u=\sqrt{2}sin(u+\dfrac{\pi}{4})\\
\Leftrightarrow sin^3u=sinu+cosu\\
\Leftrightarrow cosu+sinu(1-sin^2u)=0\\
\Leftrightarrow cosu+sinu.cos^2u=0\\
\Leftrightarrow cosu(sinu.cosu+1)=0\\
\Leftrightarrow cosu(sin2u+2)=0$
 
Last edited by a moderator:
Top Bottom