[Toán 11]Bài tập lượng giác

M

miko_tinhnghich_dangyeu

Phương trình lượng giác

Bài 1:
Đk: [TEX]sin2x \not\Rightarrow \ 0[/TEX]

[TEX]pt \Leftrightarrow tanx+(tanx+cotx) = \sqrt{3} +\frac{2}{sinx} \\ \Rightarrow tanx+\frac{2}{sinx}= \sqrt{3} +\frac{2}{sinx} \\ \Rightarrow tanx= \sqrt{3}[/TEX]

bài 2: đk [TEX]sin4x.cos3x \not= \ 0[/TEX]

[TEX]pt \Leftrightarrow 2(tan3x -tanx) +(tan3x+cot2x)= \frac{2}{sin4x} \\ \Rightarrow \frac{2sin2x}{cos3xcosx}+\frac{cosx}{cos3x.sin2x} = \frac{2}{sin4x} \\ 4 sinx.sin4x +2cosx.cos2x=2cos3x \\ \Rightarrow 4 sinx.sin4x +cosx - cos3x =0 \\ sinx.sin2x(4cos2x +1)=0[/TEX]
 
Last edited by a moderator:
N

newstarinsky

3) ĐK .........
Pt trở thành
$2tan3x-2tanx+tan3x+cot2x=\dfrac{2}{sin4x}\\
\Leftrightarrow \dfrac{2(sin3x.cosx-cos3x.sinx)}{co3x.cosx}+\dfrac{sin3x.sin2x+cos2x.cos3x}{cos3x.sin2x}=\dfrac{2}{sin4x}\\
\Leftrightarrow \dfrac{2sin2x}{cos3x.cosx}+\dfrac{cosx}{cos3x.sin2x}=\dfrac{2}{sin4x}\\
\Leftrightarrow \dfrac{4sinx}{cos3x}+\dfrac{1}{2sinx.cos3x}=\dfrac{2}{sin4x}\\
\Leftrightarrow 8sinx.sinx.sin4x+sin4x=4sinx.cos3x\\
\Leftrightarrow 8sin^2x.sin4x+sin4x=2sin4x-2sin2x\\
\Leftrightarrow sin4x(8sin^2x-1)=-2sin2x\\
\Leftrightarrow sin2x[cos2x(8sin^2x-1)+1]=0\\
\Leftrightarrow sin2x[cos2x(3-4cos2x)-1]=0\\
\Leftrightarrow sin2x(-4cos^22x+3cos2x-1)=0$
 
Top Bottom