Toán 10

R

rua_it

[tex]cotA+cotB=\frac{sin(A+B)}{sinA.sinB}=\frac{sinC}{sinA.sinB}=\frac{2sinC}{cos(A-B)-cos(A+B)}[/tex]
[tex]=\frac{2sinC}{cos(A-B)+cosC} =\frac{2sinC}{cosC+1)}=2tg.\frac{C}{2}[/tex]
Đẳng thức xảy ra khi và chỉ khi [tex]A=B[/tex]
CM tương tự, ta có:
[TEX]\left{\begin{cotB+cotC =2tg.\frac{A}{2}}\\{cotC+cotA = 2tg.\frac{B}{2}[/tex]
Mặt khác, ta luôn có đẳng thức sau:
[tex]tg.\frac{A}{2}tg.\frac{B}{2}+tg.\frac{B}{2}tg.\frac{C}{2}+tg.\frac{C}{2}tg.\frac{A}{2}=1(*)[/tex]
Thật vậy,
[tex]A+B+C=\pi \Leftrightarrow A+B=\pi-C \Leftrightarrow \frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}[/tex]
[tex]\Rightarrow tg.(\frac{A}{2}-\frac{B}{2})=\frac{1}{tg.\frac{C}{2}}[/tex]
[tex]\Rightarrow \frac{tg.\frac{A}{2}+tg.\frac{B}{2}}{1-tg.\frac{A}{2}.tg\frac{B}{2}}=\frac{1}{tg.\frac{C}{2}}[/tex] [tex]\Rightarrow tg.\frac{A}{2}tg.\frac{B}{2}+tg.\frac{B}{2}tg.\frac{C}{2}+tg.\frac{C}{2}tg.\frac{A}{2}=1[/tex]
Áp dụng [tex](*)[/tex], ta có:
[tex] tg^2.\frac{A}{2}+tg^2.\frac{B}{2}+tg^2.\frac{C}{2} \geq tg.\frac{A}{2}tg.\frac{B}{2}+tg.\frac{B}{2}tg.\frac{C}{2} +tg.\frac{C}{2}tg.\frac{A}{2}=1[/tex]
Đẳng thức xảy ra khi và chỉ khi [tex]tg.\frac{A}{2}=tg.\frac{B}{2}=tg.\frac{C}{2} \Leftrightarrow A=B=C[/tex]
Do đó: [tex](tg.\frac{A}{2}+tg.\frac{B}{2}+tg.\frac{C}{2})^2[/tex]
[tex]=tg^2.\frac{A}{2}+tg^2.\frac{B}{2}+tg^2.\frac{C}{2}+2(tg.\frac{A}{2}tg.\frac{B}{2}+tg.\frac{B}{2}tg.\frac{C}{2}+tg.\frac{C}{2} tg.\frac{A}{2}) \geq 1+2=3[/tex]
[tex]\Rightarrow tg.\frac{A}{2}+tg.\frac{B}{2}+tg.\frac{C}{2} \geq \sqrt{3}[/tex]
[tex]\Rightarrow cotA+cotB+cotC \geq \sqrt{3}(dpcm)[/tex]
 
Last edited by a moderator:
R

rua_it

Ngắn hơn:rolleyes:

Áp dụng BDT [tex](x+y)^2-xy+1 \geq \sqrt{3}.(x+y)(1)[/tex] ta được dpcm:rolleyes:
Đặt [tex]x=tg\frac{A}{2} y=tg\frac{B}{2} \Rightarrow tg\frac{C}{2}=cot(\frac{\pi}{2}-\frac{C}{2})=\frac{1}{tg(\frac{A}{2}+\frac{B}{2})}=\frac{1-xy}{x+y}[/tex]
Áp dụng [tex](1), \Rightarrow (x+y)^2+1-xy \geq \sqrt{3}.(x+t)[/tex]
[tex]\Rightarrow x+y+\frac{C}{2} \geq \sqrt{3}[/tex]
[tex]\Rightarrow tg\frac{A}{2}+tg\frac{B}{2}+tg\frac{C}{2} \geq \sqrt{3}[/tex]
[tex]\Rightarrow cotA+cotB+cotC \geq \sqrt{3}[/tex]
 
Last edited by a moderator:
Top Bottom