Toán 10

T

talathangngoc

Last edited by a moderator:
N

noinhobinhyen

Câu a



$a^3(b^2 - c^2) + b^3(c^2 - a^2) + c^3(a^2 - b^2) \leq 0$

Giả sử $a \geq b \geq c$

$VT = a^3b^2-a^2b^3+b^3c^2-b^2c^3+c^3a^2-c^2a^3$

$=a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)$

$=a^2b^2(a-c+c-b)+b^2c^2(b-c)+c^2a^2(c-a)$

$=(a-c)(a^2b^2-a^2c^2)+(b-c)(b^2c^2-a^2b^2)$

$=(a-c)a^2(b-c)(b+c)-(b-c)b^2(a-c)(a+c)$

$=(a-c)(b-c)(a^2b+a^2c-b^2a-b^2c)$

$=(a-c)(b-c)[ab(a-b)+c(a-b)(a+b)]$

$=(a-c)(b-c)(ab+bc+ca)(a-b)$

$=(a-b)(a-c)(b-c)(ab+bc+ca) \geq 0$
 
T

talathangngoc

Câu a



$a^3(b^2 - c^2) + b^3(c^2 - a^2) + c^3(a^2 - b^2) \leq 0$

Giả sử $a \geq b \geq c$

$VT = a^3b^2-a^2b^3+b^3c^2-b^2c^3+c^3a^2-c^2a^3$

$=a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)$

$=a^2b^2(a-c+c-b)+b^2c^2(b-c)+c^2a^2(c-a)$

$=(a-c)(a^2b^2-a^2c^2)+(b-c)(b^2c^2-a^2b^2)$

$=(a-c)a^2(b-c)(b+c)-(b-c)b^2(a-c)(a+c)$

$=(a-c)(b-c)(a^2b+a^2c-b^2a-b^2c)$

$=(a-c)(b-c)[ab(a-b)+c(a-b)(a+b)]$

$=(a-c)(b-c)(ab+bc+ca)(a-b)$

$=(a-b)(a-c)(b-c)(ab+bc+ca) \geq 0$
Cảm ơn bạn.
Đề sai hả bạn********************************************************???????
 
Top Bottom