Do $A+B+C = \pi$
Nên: $\sin(A+C)+\sin(B+C)+\cos(A+B) = \dfrac{3}{2}$
$\leftrightarrow \sin B+\sin A-\cos C = \dfrac{3}{2}$
$\leftrightarrow 2 \sin \dfrac{A+B}{2} \cos \dfrac{A-B}{2}-(2\cos^2 \dfrac{C}{2}-1) = \dfrac{3}{2}$
$\leftrightarrow 2 \cos \dfrac{C}{2} \cos \dfrac{A-B}{2}-2\cos \dfrac{C}{2} = \dfrac{1}{2}$
$\leftrightarrow 4 \cos^2 \dfrac{C}{2}-4 \cos \dfrac{C}{2} \cos \dfrac{A-B}{2}+1 = 0$
$\leftrightarrow (2 \cos \dfrac{C}{2}-\cos \dfrac{A-B}{2})^2+1-\cos^2 \dfrac{A-B}{2} = 0$
$\leftrightarrow (2 \cos \dfrac{C}{2}-\cos \dfrac{A-B}{2})^2+\sin^2 \dfrac{A-B}{2} = 0$
$\leftrightarrow \begin{cases} 2 \cos \dfrac{C}{2} = \cos \dfrac{A-B}{2} \\ \sin \dfrac{A-B}{2} = 0 \end{cases}$
$\leftrightarrow \begin{cases} A = B = \dfrac{\pi}{6} \\ C = \dfrac{2\pi}{3} \end{cases}$