[toán 10] tìm MAX. Khó quá, giúp tớ !!!!!

H

hg201td

cho 1 \leq a,b,c \leq3 và a+b+c=6
Tìm GTLN của[tex] P= a^2+b^2+c^2[/tex]
giúp tớ nha, cảm ơn >:D<

Bài
này ko dùng BĐt nhìn đk xủa a,b,c
mình nghĩ đề bài là a+b+c=5 chứ nhỉ
Nếu đb là a+b+c=5 thì ta có thể dùng là [TEX](a-1)(a-3)\leq 0[/TEX]
[TEX]\Rightarrow a^2-4a+3\leq 0 \Rightarrow a^2\leq 4a-3[/TEX]
Tương tự [TEX]b^2\leq 4b-3; c^2\leq 4c-3[/TEX]
[TEX]\Rightarrow P=a^2+b^2+c^2\leq 4(a+b+c)-12=5[/TEX]
Pmax=5
[TEX]\Leftrightarrow [/TEX]Trong 3 số có 2 số =1 1 số =3
Còn với TH a+b+c=6 thì dấu bằng xảy ra ko lẽ là a=b=c mà vô lý quá
Xem lại đề
 
Last edited by a moderator:
I

ILoveNicholasTeo

đề ko sai đâu, đúng 100% đó.
đây là đề thi chọn HSG của trường tớ đó, câu khó nhất
 
F

final_fantasy_vii

8o1f7rm49uds5kzm0dt.gif


Đến đây chắc ra rùi nhỉ ^^
max=12 khi a=b=c=2
 
B

boyxuthanh

bài này max hok phải bằng 12 mà là bằng 14 giả sử a<b<c thi giá trị max tại a=1 ,b=2, c=3
 
B

boyxuthanh

cho 1 \leq a,b,c \leq3 và a+b+c=6
Tìm GTLN của[tex] P= a^2+b^2+c^2[/tex]
giúp tớ nha, cảm ơn >:D<
[TEX]a+b+c=6 \Rightarrow b+c=6-a[/TEX]
Ta có :
[TEX]b.c\leq3 [/TEX]
[TEX]\Rightarrow a^2+b^2+c^2 \leq a^2+b^2+c^2+2(b-3)(c-3) \leq a^2+(b^2+2bc+c^2)-6(b+c)+18 \leq a^2+(6-a)^2-6(6-a)+18 \leq 14+2(a-1)(a-2)[/TEX]
Giả sử [TEX] 1\leq a \leq b \leq c \leq3 [/TEX]
[TEX]\Rightarrow 3a \leq6 \Rightarrow a \leq2 [/TEX]
[TEX]\Rightarrow (a-1)(a-2) \leq 0[/TEX]
[TEX]Pmax = 14[/TEX]
Dấu "=" xảy ra khi [TEX]a=1,b=2,c=3[/TEX]
KT: 9x_conduongtoidi
 
Last edited by a moderator:
Top Bottom