$A = cos\dfrac{2\pi}{2\pi +1} + cos\dfrac{4\pi}{2\pi +1} + ... + cos\dfrac{2n\pi}{2\pi +1}$
$2sin\dfrac{\pi}{2\pi + 1}.A = 2sin\dfrac{\pi}{2\pi + 1}.cos\dfrac{2\pi}{2\pi +1} + 2sin\dfrac{\pi}{2\pi + 1}.cos\dfrac{4\pi}{2\pi +1} + ... + 2sin\dfrac{\pi}{2\pi + 1}.cos\dfrac{2n\pi}{2\pi +1}$
$2sin\dfrac{\pi}{2\pi + 1}.A = -sin\dfrac{\pi}{2\pi + 1} + sin\dfrac{3\pi}{2\pi + 1} - sin\dfrac{3\pi}{2\pi + 1} + sin\dfrac{5\pi}{2\pi + 1} + ... - sin\dfrac{(2n -1)\pi}{2\pi + 1} +sin\dfrac{(2n +1)\pi}{2\pi + 1}$
$2sin\dfrac{\pi}{2\pi + 1}.A = - sin\dfrac{\pi}{2\pi + 1} + 0$
$A = \dfrac{-1}{2} $