Toán 10: PT

L

lalinhtrang

Last edited by a moderator:
V

vipboycodon

2. $\dfrac{1}{(x-1)^2}+\sqrt{3x+1} = \dfrac{1}{x^2}+\sqrt{x+2}$

$\leftrightarrow \sqrt{3x+1}-\sqrt{x+2} = \dfrac{1}{x^2}-\dfrac{1}{(x-1)^2}$

$\leftrightarrow \dfrac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}} = \dfrac{-2x+1}{x^2(x-1)^2}$

$\leftrightarrow \left[\begin{matrix} x = \dfrac{1}{2} \\ \dfrac{1}{\sqrt{3x+1}+\sqrt{x+2}} = \dfrac{-1}{x^2(x-1)^2} \ (VN) \end{matrix}\right.$

3. $\sqrt{1-x^2} = (\dfrac{2}{3}-\sqrt{x})^2$

Đặt $u = \sqrt{x}$ và $v = \dfrac{2}{3}-\sqrt{x}$

Ta có hệ:

$\begin{cases} u+v = \dfrac{2}{3} \\ \sqrt{1-u^4} = v^2 \end{cases} \leftrightarrow \begin{cases} u+v = \dfrac{2}{3} \\ u^4+v^4 = 1 \end{cases}$
 
L

lp_qt

$$\sqrt{7x^2+25x+19} - \sqrt{x^2-2x-35}=7 \sqrt{x+2}$$

$$\iff \sqrt{7x^2+25x+19}= \sqrt{x^2-2x-35}+7 \sqrt{x+2}$$

$$\iff x^2-2x-35+49(x+2)+14.\sqrt{(x+2)(x-7)(x+5)}=7x^2+25x+19$$

$$\iff 14.\sqrt{(x+2)(x-7)(x+5)}=6x^2-22x-44$$

$$\iff 7\sqrt{(x+2)(x-7)(x+5)}=3x^2-11x-22$$

$\left\{\begin{matrix}
a=\sqrt{x^2-5x-14} & \\
b=\sqrt{x+5} &
\end{matrix}\right.(a;b \ge 0)$

$$\rightarrow 7ab=3a^2+4b^2 \iff ....$$
 
Top Bottom