[toán 10] Min Max đề thi thử đại học

M

minhtuyb

Giải :
Ta có [tex]\frac{1}{2 + x + yz} + \frac{1}{2 + y + xz} + \frac{1}{2 + z + xy} \le \frac{1}{4}\left (\frac{1}{x + 2} + \frac{1}{yz} + \frac{1}{y + 2} + \frac{1}{xz} + \frac{1}{z + 2} + \frac{1}{xy}\right ) [/tex]
[tex]= \frac{1}{4}\left (\frac{1}{x + 2} + \frac{1}{y + 2} + \frac{1}{z + 2} \right ) + \frac{1}{4}\left (\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx}\right )[/tex]
Mặt khác :
[tex]4\left (x + y + z\right ) = 3xyz \Leftrightarrow \frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} = \frac{3}{4}[/tex]
Và :[tex]3xyz = 4\left (x + y + z\right ) \ge 12\sqrt[3]{xyz} \Leftrightarrow xyz \ge 8 \Leftrightarrow xy + yz + zx \ge 3\sqrt[3]{x^2y^2z^2} \ge 12[/tex]
Trở lại với biểu thức trên :
[tex]P1. \frac{1}{4}\left (\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx}\right ) = \frac{1}{4}.\frac{3}{4} = \frac{3}{16}[/tex]
Ta sẽ chứng minh
[tex]P2.\frac{1}{x + 2} + \frac{1}{y + 2} + \frac{1}{z + 2} \le \frac{3}{4} (1)[/tex]
Thật vậy :
[tex](1)\Leftrightarrow 4.\left (xy + yz + zx + 4\left (x + y + z\right ) + 12\right ) \le 3\left (xyz + 12\left (x + y + z\right ) + 2\left (xy + yz + zx\right ) \right ) [/tex]
[tex]\Leftrightarrow 4\left (x + y + z\right ) + 24 \le 3xyz + 2\left (xy + yz + zx\right)[/tex]
Đúng vì [tex]VP = 3xyz + 2\left (xy + yz + zx\right ) \ge 4\left (x + y + z\right ) + 2.12 = VT[/tex]
Từ đó suy ra
[tex]P_{max} = \frac{3}{16} + \frac{1}{4}.\frac{3}{4} = \frac{3}{8}[/tex]
Vậy [tex]P_{max} = \frac{3}{8}[/tex]

huymit-VMF :p
 
Top Bottom