[Toán 10]Lượng giác

B

balep

[Chuyên đề]Lượng giác

Kiến thức , bài tập, chuyên đề lượng giác post tại đây
1.Rút Gọn
[TEX]\frac{{sin}^6x+{cos}^6x-1}{{sin}^4x+{cos}^4x-1}[/TEX]
 
Last edited by a moderator:
D

duynhan1

Kiến thức , bài tập, chuyên đề lượng giác post tại đây
1.Rút Gọn
[TEX]\frac{{sin}^6x+{cos}^6x-1}{{sin}^4x+{cos}^4x-1}[/TEX]

[TEX]\frac{sin^6x + cos^6x}{{sin}^4x+{cos}^4x-1}= \frac{(sin^2x+cos^2x)(sin^4x+cos^4x -sin^2x.cos^2x -1}{{sin}^4x+{cos}^4x-1} [/TEX]

[TEX]=1 -\frac{sin^2x.cos^2x}{-2sin^2xcos^2x } [/TEX]

[TEX]=1\frac{1}{2}[/TEX]
 
Q

quangtruong94

đây nè .Em không biết gõ công thức nên các bác coi tạm :

1/cos^3 x.cos3x+ sin^3 x.sin3x= cos^3 2x
2/cos3x.sin^3 x+sin3x+cos^3 x=3/4sin4x
3/ 1/cos^6 x - tan^6 x = 3.tan^2 x/cos^2 x +1
4/ tanx-1/cos4x=(sin2x-cos2x)/sin2x+cos2x)
5/ (cot^2 2x-1)/2cot2x- cos8x.cot4x=sin8x
 
Q

quangtruong94

1) [tex]con^3x.cos3x + sin^3x.sinx=cos^32x [/tex]
<=> [tex](3/4.cosx + 1/4.cos3x).cos3x + (3/4.sinx - 1/4.sin3x).sin3x = cos^32x[/tex]
<=> [tex](3cosx + cos3x).cos3x + (3sinx - sin3x).sin3x = 4cos^32x[/tex]
<=> [tex](cos^23x - sin^23x)+ 3cosx.cos3x + 3sinx.sin3x = 4.(3/4.cos2a)+1/4.cos6a)[/tex]
<=> [tex]cos6x + 3.[1/2(cos2x+cos4x) + 1/2.(cos2x - cos4x)] = 4.(3/4.cos2a)+1/4.cos6a)[/tex]
<=> [tex]cos6x + 3.cos2x = 3cos2x + cos6x[/tex]
 
Last edited by a moderator:
L

la_muaha

2/ cos3x.sin^3x+ sin3xcos^3x
= (4cos^3x-3cosx)sin^3x+(3sinx-4sin^3x)cos^3x
= 4cos^3xsin^3x-3cosxsin^3x+3sinxcos^3x- 4sin^3xcos^3x
=3sinxcosx(cos^2x- sin^2x)
=3sinxcosxcos2x=3/4sin4x
na na na
 
Q

quyenuy0241

[tex]=cos3x.sin^3 x+sin3x.cos^3 x[/tex]

[tex]=\frac{3sinx-sin3x}{4}.sin3x+\frac{cos3x+3cosx}{4}.sin3x[/tex]

[tex]=\frac{3}{4}.(cos3xsinx+sin3xcosx)[/tex]

[tex]=\frac{3}{4}.sin4x[/tex]
cách khác !!!!

[tex]\Leftrightarrow cos3x.sinx.sin^2x+sin3x.cosx.cos^2x[/tex]

[tex]= \frac{1}{2}(sin4x-sin2x)sin^2x+\frac{1}{2}(sin4x+sin2x)[/tex]

[tex]=\frac{1}{2} sin4x(sin^2x+cos^2x)+\frac{1}{2}sin^2x.(cos^2x-sin^2x)[/tex]

[tex]= \frac{1}{2}sin4x+\frac{1}{2}sin2x.cos2x=\frac{3}{4}sin4x[/tex]
 
R

rua_it

1/cos^3 x.cos3x+ sin^3 x.sin3x= cos^3 2x
2/cos3x.sin^3 x+sin3x+cos^3 x=3/4sin4x
3/ 1/cos^6 x - tan^6 x = 3.tan^2 x/cos^2 x +1

[tex]\frac{1}{cos^6x}-tan^6x=\frac{1}{cos^6x}-\frac{sin^6x}{cos^6x}[/tex]

[tex]=\frac{(sin^2+cos^2)^3-sin^6x}{cos^6x}[/tex]

[tex]=\frac{sin^6+cos^6x+3sin^2x.cos^2x.(sin^2+cos^2x)-sin^6x}{cos^6x}[/tex]

[tex]=\frac{cos^6x+3sin^2x.cos^2x}{cos^6x}[/tex]

[tex]=1+\frac{3.tan^2x}{cos^2x}[/tex]
 
R

rua_it

[tex]LHS:=tanx-\frac{1}{cos4x}[/tex]

[tex]=\frac{sinx}{cosx}-\frac{1}{cos^22x-sin^22x}[/tex]

[tex]\Rightarrow \frac{sinx}{cosx}-\frac{1}{(cos2x+sin2x)(cos2x-sin2x)}=\frac{(sin2x-cos2x)}{sin2x+cos2x}[/tex]

[tex]\Leftrightarrow \frac{1}{(cos2x+sin2x)(cos2x-sin2x)}+\frac{(sin2x-cos2x).(cos2x-sin2x)}{(cos2x+sin2x)(cos2x-sin2x)}=\frac{sinx}{cosx}[/tex]

[tex]\Leftrightarrow \frac{1-(sin2x-cos2x)^2}{(cos2x+sin2x)(cos2x-sin2x)}=\frac{sinx}{cosx}[/tex]

[tex]\Leftrightarrow \frac{1-(1-2sin2x.cos2x)}{(cos2x+sin2x)(cos2x-sin2x)}=\frac{sinx}{cosx}[/tex]

[tex]\Leftrightarrow \frac{2sin2x.cos2x}{(cos2x+sin2x)(cos2x-sin2x)}=\frac{sinx}{cosx}[/tex]

[tex]\Leftrightarrow \frac{sin4a}{cos4x}=\frac{sinx}{cosx}[/tex]

Do đó theo tôi đề phải là

[tex] tan4x-\frac{1}{cos4x}=\frac{(sin2x-cos2x)}{sin2x+cos2x}[/tex]
 
Top Bottom