[Toán 10] Lượng giác

V

vuonghongtham07

Last edited by a moderator:
H

hien_vuthithanh

2. $$4 cos^3 x- \sqrt{3} sin 3x=1+ 3 cos x$$
$$\leftrightarrow 4 cos^3 x -3 cos x = \sqrt{3} sin 3x +1$$
$$\leftrightarrow cos 3x =\sqrt{3} sin 3x +1$$
$$\leftrightarrow \dfrac{ \sqrt{3}}{2} sin 3x - \dfrac{1}{2}cos 3x = \dfrac{-1}{2}$$
$$\leftrightarrow sin(3x-\dfrac{\pi}{6})=sin\dfrac{-\pi}{6}$$
$$\leftrightarrow \begin{bmatrix}& 3x- \dfrac{\pi}{6}=\dfrac{-\pi }{6}+k2\pi & \\ & 3x- \dfrac{\pi}{6}= \pi -\dfrac{-\pi }{6}+k2\pi & \end{bmatrix}$$
$$\leftrightarrow \begin{bmatrix} & x=\dfrac{2}{3}k\pi & \\ & x=\dfrac{4\pi }{9}+\dfrac{2}{3}k\pi& \end{bmatrix}$$
 
L

lp_qt

3. $ \dfrac{1+cos x+cos 2x+cos 3x}{2 cos^2 x+cos x-1}=\dfrac{2}{3}(3-\sqrt{3}sin x)$


$\dfrac{1+\cos x+\cos 2x+\cos 3x}{2 \cos^2 x+\cos x-1} =\dfrac{(1+\cos2x)+(cosx+\cos3x)}{(2 \cos^2 x-1)+\cos x}
=\dfrac{2.\cos^2x+2.cosx.\cos2x}{\cos2x+cosx}
=\dfrac{2.cosx(\cos2x+cosx)}{\cos2x+cosx}=2.\cosx$

$\dfrac{1+\cos x+\cos 2x+\cos 3x}{2 \cos^2 x+\cos x-1}=\dfrac{2}{3}(3-\sqrt{3}\sin x)$

$\Longleftrightarrow cosx+\dfrac{\sqrt{3}}{3}.sinx=1$

Rồi giải tuong tu nhu trên.
 
D

dien0709

Ở bài 2 cần đk $(cosx+1)(2cosx-1)\neq 0$

1)$sin^2x−\sqrt{3}cos^2x−1/2sin2x=2(sinx−cosx)−\dfrac{\sqrt{3}}{2}sin2x$

$=>sin^2x-sinxcosx-\sqrt{3}cos^2x+\sqrt{3}sinxcosx-2(sinx-cosx)=0$

$=>sinx(sinx-cosx)+\sqrt{3}cosx(sinx-cosx)-2(sinx-cosx)=0$
 
Top Bottom