\[\begin{array}{l}
T = 2{\left( {{{\sin }^4}x + \frac{1}{4}{{\sin }^2}2x + {{\cos }^4}x} \right)^2} - \left( {{{\sin }^8}x + {{\cos }^8}x} \right)\\
= 2{\left[ {\left( {{{\sin }^2}x + {{\cos }^2}x} \right) - {{\sin }^2}x{{\cos }^2}x} \right]^2} - \left[ {{{\left( {{{\sin }^4}x - {{\cos }^4}x} \right)}^2} + 2{{\sin }^4}x{{\cos }^4}x} \right]\\
= 2\left( {1 - 2{{\sin }^2}x{{\cos }^2}x + {{\sin }^4}x{{\cos }^4}x} \right) - {\left( {{{\sin }^2}x - {{\cos }^2}x} \right)^2}{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^4}x{\cos ^4}x\\
= 2 - 4{\sin ^2}x{\cos ^2}x - \left( {{{\sin }^4}x - 2{{\sin }^2}x{{\cos }^2}x + {{\cos }^4}x} \right)\\
= - \left[ {{{\sin }^4}x + {{\cos }^4}x + 2{{\sin }^2}x{{\cos }^2}x - 2} \right]\\
= - \left[ {{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} - 2} \right] = 1
\end{array}\]