Toán [Toán 10] Hệ phương trình

trunghieule2807

Học sinh tiến bộ
Thành viên
24 Tháng hai 2017
531
519
209
Hà Tĩnh
Bài 1:
Ta có:
[tex]\left\{\begin{matrix} xy^{2}+x+y+\frac{1}{y}=4 & \\ y^{2}+x+\frac{1}{y}=3 & \end{matrix}\right.(y\neq 0)[/tex]
Từ phương trình suy ra:
[tex]\left\{\begin{matrix} y(xy+1)+\frac{xy+1}{y}=4 & \\ y^{2}+\frac{xy+1}{y}=3 & \end{matrix}\right.[/tex]
Đặt [tex]xy+1=a,y=b(b\neq 0)[/tex] ta có:
[tex]\left\{\begin{matrix} b^{2}+\frac{a}{b}=3 & \\ ab+\frac{a}{b}=4 & \end{matrix}\right.[/tex]
[tex]\Rightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ ab^{2}+a=4b & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ b\left ( 2b^{2}-b^{4}-1 \right )=0 & \end{matrix}\right.[/tex]
[tex]\Leftrightarrow \left\{\begin{matrix} b=0 & \\ a=0 & \end{matrix}\right.[/tex](Loại) hoặc [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.[/tex]
TH1: [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex]
TH2: [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
Vậy hệ phương trình có hai nghiệm: [tex]\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]
 
Top Bottom