$PT1 \leftrightarrow x+y-(x+y)^2+\sqrt{x+y+3}-2\sqrt{x+y} = 0$
$\leftrightarrow (x+y)(1-x-y)+\dfrac{3(1-x-y)}{\sqrt{x+y+3}+2\sqrt{x+y}} = 0$
$\leftrightarrow (1-x-y)(x+y+\dfrac{3}{\sqrt{x+y+3}+2\sqrt{x+y}}) = 0$
$\leftrightarrow y = 1-x$
thay vào PT2 ta được: $\sqrt{x^2+3}+\sqrt{2x-1} = 3$
$\leftrightarrow \sqrt{x^2+3}-2+\sqrt{2x-1}-1 = 0$
$\leftrightarrow \dfrac{x^2-1}{\sqrt{x^2+3}+2}+\dfrac{2x-2}{\sqrt{2x-1}+1} = 0$
$\leftrightarrow (x-1)(\dfrac{x+1}{\sqrt{x^2+3}+2}+\dfrac{2}{\sqrt{2x-1}+1}) = 0$
$\leftrightarrow x = 1 \rightarrow y = 0$