[Toán 10]hệ phương trình

N

nguyenbahiep1

1){x^2+y^2+x+y=4
{x^3+y^3=-7

câu 1

[laTEX]\begin{cases} (x+y)^2 +(x+y) -2xy = 4 \\ (x+y)((x+y)^2 -3xy) = - 7 \end{cases} \\ \\ \\ S = x+y \\ \\ P = xy \\ \\ \begin{cases} S^2 +S -2P = 4 \\ S(S^2 -3P) = - 7 \end{cases} \\ \\ P = \frac{1}{2}(S^2+S -4) \Rightarrow S.( S^2 - \frac{3}{2}(S^2+S -4)) = -7 \\ \\ S^3 + 3S^2 - 12S - 14= 0 \Rightarrow TH_1 : S = -1 \Rightarrow P = -2\\ \\ TH_2: S^2+2S-14 = 0 [/laTEX]
 
N

nguyenbahiep1

2) {2x/(y^2+1) +3x=4
{2y/(x^2+1) +3y=4

lấy (1) - (2)

[laTEX]\frac{2x}{y^2+1} - \frac{2y}{x^2+1} + 3(x-y) = 0 \\ \\ 2(\frac{x^3+x-y^3-y}{(y^2+1)(x^2+1)}) + 3(x-y) = 0 \\ \\ 2.\frac{(x-y)(x^2+y^2+xy)+(x-y)}{(y^2+1)(x^2+1)} + 3(x-y) = 0 \\ \\ TH_1: x = y \Rightarrow \frac{2x}{x^2+1} +3x = 4 \\ \\ 2x + 3x^3 +3x -4x^2-4 = 0 \Rightarrow x=y = 1 \\ \\ TH_2: 2.\frac{x^2+y^2+xy+1}{(y^2+1)(x^2+1)} + 3 > 0 \Rightarrow vo-nghiem [/laTEX]
 
N

nguyenbahiep1

3) {x^2+xy+y^2=84
{x-căn xy +y=6


[laTEX]\begin{cases} (x+y)^2 - xy = 84 \\ x+y - \sqrt{xy} = 6 \end{cases} \\ \\ \\ S = x+y \\ \\ P = \sqrt{xy} \\ \\ \\ \begin{cases} S^2-P^2= 84 \\ S - P = 6 \end{cases} \\ \\ S = 6+P \Rightarrow (P+6)^2 -P^2 = 84 \Rightarrow P = 4 , S = 10 \\ \\ x + y = 10 \\ \\ xy = 16[/laTEX]
 
N

nguyenbahiep1

4) {x62-y^2+(x+y)^2=x-y+1
{x^2 +y^2 +xy=3


[laTEX] \begin{cases} (x-y)(x+y) + (x+y) = x-y +1 \\ x^2+y^2+xy = 3 \end{cases} \\ \\ \\ \begin{cases} (x-y+1)(x+y) = x-y +1 \\ x^2+y^2+xy = 3 \end{cases} \\ \\ TH_1: \begin{cases} x-y +1 = 0 \\ x^2+y^2+xy = 3 \end{cases} \\ \\ TH_2: \begin{cases} x+y = 1 \\ x^2+y^2+xy = 3 \end{cases}[/laTEX]
 
N

nguyenbahiep1

5) {y^2(x^2-3) +xy=0
{ y^2(3x^2-6) +xy +2=0

[laTEX]\begin{cases} (xy)^2 +xy -3y^2 = 0 \\ 3(xy)^2 +xy - 6y^2 + 2 = 0 \end{cases} \\ \\ a = xy \\ \\ b = y^2 \\ \\ \begin{cases} a^2 +a -3b = 0 \\ 3a^2 +a - 6b+ 2 = 0 \end{cases} \\ \\ \Rightarrow 3b = a^2 + a \Rightarrow 3a^2+a - 2a^2-2a+2 = 0 \\ \\ vo-nghiem[/laTEX]
 
Top Bottom