[Toán 10]Giải và biện luận phương trình

B

boobn

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1) giải và biện luận các pt sau:
a) (m-1)x+2=0 b) m(x-2)+x-m=x(2m+1) c) m^2(x+1)=x+m 2)cho pt : x^2-4x-m+1=0
a) giải và biện luận pt theo m
b) tìm m để pt có 2 nghiệm [TEX]x_1[/TEX], [TEX]x_2[/TEX] thỏa mãn điều kiện [TEX]x_1[/TEX] +[TEX]x_2[/TEX] + 2 [TEX]x_1[/TEX][TEX]x_2[/TEX] =2
c) tìm m để pt có 2 nghiệm trái dấu
 
T

tha0_kut3

Mấy bài này cũng dễ mà

Biện luận:

a/ (m-1)x+2=0
_m=0 => PT có dạng 0x+2=0 => PT vô No
_m#0 => PT có No duy nhất x= [TEX]\frac{-2}{m-1}[/TEX]

Tương tự với mấy cái kia, chỉ cần chuyển vế sang rồi nhóm x vào để cho nó có dạng ax+b=0

b/ Trước tiên tìm đkien để PT có 2 No.

Từ đầu bài => (x1+x2)^2 = 2

Áp dụng Viet x1+x2= -b/a là xong

c/ Cho ac<0
 
C

camnhungle19

/:)
Dễ mà ngay câu a bạn đã làm sai rùi, này nhé:
a, (m-1)x+2=0 (1)

* m=1 pt trở thành: 0x+2=0 => pt vô nghiệm
* m#1: (1) <=> x= -2 / (m-1)
các câu còn lại chuyển về pt bậc nhất rồi giải tương tự:
b, mx+ 3m=0 bl với m=0 và m#0
c, pt thành
(m^2 -1)x+m^2 -m=0
* m^2-1=0 <=> m=1 hoặc m= -1
với m=1 => 0x=0 => pt có vô số ngiệm
với m=-1 => 0x+ 2= 0 => pt vô nghiệm
* m^2-1 # 0 <=> m#-1 và m#1
=> x=(m-m^2)/(m^2-1) = -m/ (m+1)
 
Top Bottom