[Toán 10] Giải phương trình

L

lp_qt

$-1\le x \le 3$

$(x\sqrt{x+1}+\sqrt{3-x})^{2} \le (x^{2}+1)(x+1+3-x)=4.(x^{2}+1)$

\Rightarrow $\left | x\sqrt{x+1}+\sqrt{3-x} \right | \le 2.\sqrt{x^{2}+1}$

vậy $x\sqrt{x+1}+\sqrt{3-x} = 2.\sqrt{x^{2}+1}$

\Leftrightarrow $x.\sqrt{x-3}=\sqrt{x+1}.1$

\Leftrightarrow $x=1$
 
Last edited by a moderator:
D

demon311

$-1\le x \le 3$

$(x\sqrt{x+1}+\sqrt{3-x})$ $\le (x^{2}+1)(x+1+3-x)=4.(x^{2}+1)$

\Rightarrow $\left | x\sqrt{x+1}+\sqrt{3-x} \right | \le 2.\sqrt{x^{2}+1}$

vậy $x\sqrt{x+1}+\sqrt{3-x} = 2.\sqrt{x^{2}+1}$

\Leftrightarrow $x.\sqrt{x-3}=\sqrt{x+1}.1$

\Leftrightarrow $x=1$

Quên mũ 2 thím ơi
===============================================
 
Top Bottom