[Toán 10] Giải phương trình

T

trang_dh

a/[tex]\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^{2}+10x+3}-16[/tex](1)
đk:[TEX]x\geq\frac{-1}{2}[/TEX]
(1)[TEX]\Leftrightarrow\sqrt{4x+3}+\sqrt{2x+1}=4x+3+\sqrt{8x^{2}+10x+3}+2x+1-20[/TEX]

[TEX]\Leftrightarrow(\sqrt{4x+3}+\sqrt{2x+1})^2-(\sqrt{4x+3}+\sqrt{2x+1})-20=0[/TEX]

[TEX]\Leftrightarrow(\sqrt{4x+3}+\sqrt{2x+1}-5)(\sqrt{4x+3}+\sqrt{2x+1}+4)=0[/TEX]

[TEX]\Leftrightarrow\sqrt{4x+3}+\sqrt{2x+1}=5[/TEX](do[TEX]\sqrt{4x+3}+\sqrt{2x+1}+4>0[/TEX]
[TEX]\Leftrightarrow(\sqrt{4x+3}+\sqrt{2x+1})^2=25[/TEX]

[TEX]\Leftrightarrow6x+4+2\sqrt{8x^{2}+10x+3}=25[/TEX]

[TEX]\Leftrightarrow\sqrt{8x^{2}+10x+3}=21-6x[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix}8x^{2}+10x+3=21^2-2.21.6x+36x^2\\\frac{-1}{2}\leq x \leq\frac{21}{6}\end{matrix}\right[/TEX]
 
Last edited by a moderator:
B

braga

$\fbox{b}. \ \ \ \text{Đặt} \ \sqrt[5]{32-x^2}=a \ ; \ \sqrt[5]{1-x^2 }=b \\ \text{Ta đưa về giải hệ phương trình:}$
$$\begin{cases}a-b=4\\a^5-b^5=31\end{cases}$$
$\fbox{c}.$
$DK: \ \left[ \begin{array}{l} x\ge 1 \\ -1\le x<0 \\ \end{array} \right.$
Xét 2 trường hợp:
- Nếu $-1\le x<0$: Vế trái pt âm $\implies ptvn$
- Nếu $x\ge 1$ , ta có:
$pt \iff x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}} \\ \iff x(x-1)-2\sqrt{x(x-1)}+1=0 \\ \iff \left(\sqrt{x(x-1)}-1\right)^2=0 \\ \iff \sqrt{x(x-1)}=1 \\ \iff x^2-x-1=0 \iff x=\dfrac{1+\sqrt{5}}{2}$
 
Top Bottom