Bài 9:
d/ $(13-4x)\sqrt{2x-3}+(4x-3)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}$
$\iff (6-4x)\sqrt{2x-3}+7\sqrt{2x-3}+(4x-10)\sqrt{5-2x}+7\sqrt{5-2x}=2+8\sqrt{(5-2x)
(2x-3)}$
$\iff -2\sqrt{(2x-3)^3}-2\sqrt{(5-2x)^3}+7(\sqrt{2x-3}+\sqrt{5-2x})=2+8\sqrt{(5-2x)
(2x-3)}$
$\iff -2(\sqrt{2x-3}+\sqrt{5-2x})(2x-3-\sqrt{(5-2x)(2x-3)}+5-2x)+7(\sqrt{2x-
3}+\sqrt{5-2x})=2+8\sqrt{(5-2x)(2x-3)}$
$\iff -2(\sqrt{2x-3}+\sqrt{5-2x})(2-\sqrt{(5-2x)(2x-3)})+7(\sqrt{2x-3}+\sqrt{5-
2x})=2+8\sqrt{(5-2x)(2x-3)}$
Đặt $\sqrt{2x-3}+\sqrt{5-2x}=a (a \ge 0) \Longrightarrow \sqrt{(5-2x)(2x-
3)}=\dfrac{a^2-2}{2}$, ta có:
$-2a(2-\dfrac{a^2-2}{2})+7a=2+8.\dfrac{a^2-2}{2}$
$\iff -4a+a^3-2a+7a=2+4a^2-8$
$\iff (a+1)(a-3)(a-2)=0$
$\iff \left[\begin{matrix}a=-1\ (L)\\a=3 (N)\\a=2(N)\end{matrix}\right.$
$\iff \left[\begin{matrix}\sqrt{2x-3}+\sqrt{5-2x}=2\\\sqrt{2x-3}+\sqrt{5-
2x}=3\end{matrix}\right.$
$\iff ..............$