(Toán 10) Giải hpt

B

baochau15

Last edited by a moderator:
V

vipboycodon

a) $\begin{cases} y-x+1+\sqrt{2} = \sqrt{x+1}+\sqrt{2-x} \ (1) \\ 2x^3-y^3+x^2y^2 = 2xy-3x^2+3y \ (2) \end{cases}$

Điều kiện: $-1 \le x \le 2$

$(2) \leftrightarrow 2x^3-y^3+x^2y^2 = 2xy-3x^2+3y $

$\leftrightarrow (x^2-y)(2x+y^2+3) = 0$

$\rightarrow y = x^2$

thay vào (1) ta có: $x^2-x+1+\sqrt{2} = \sqrt{x+1}+\sqrt{2-x}$

$\leftrightarrow x^2-x+(\sqrt{2}-1)x+1-\sqrt{x+1}+(1-\sqrt{2})x+\sqrt{2}-\sqrt{2-x} = 0$

$\leftrightarrow x(x-1)+\dfrac{x(x-1)(3-2\sqrt{2})}{(\sqrt{2}-1)x+1+\sqrt{x+1}}+\dfrac{x(x-1)(3-2\sqrt{2})}{(1-\sqrt{2})x+\sqrt{2}+\sqrt{2-x}} = 0$

$\rightarrow \left[\begin{matrix} x = 0 \\ x = 1 \end{matrix}\right.$
 
Top Bottom