Toán [Toán 10] Đề toán chung ( bất đẳng thức và pt đường thẳng)

Bonechimte

Học sinh tiêu biểu
Thành viên
8 Tháng bảy 2017
2,553
4,752
563
Hà Nội
...
Bất :3
$\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geqslant \frac{16}{2x+y+z}$ ( cauchy)
tương tự
$\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\geqslant \frac{16}{x+2y+z}$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\geqslant \frac{16}{x+y+2z}$
$\Rightarrow$ $\frac{16}{2x+y+z}+\frac{16}{x+2y+z}+\frac{16}{x+y+2z}\leqslant 16$
.... đpcm
 

Hoàng Hà Trung Đức

Học sinh
Thành viên
24 Tháng chín 2017
100
27
26
22
Nghệ An
Bất :3
$\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geqslant \frac{16}{2x+y+z}$ ( cauchy)
tương tự
$\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\geqslant \frac{16}{x+2y+z}$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\geqslant \frac{16}{x+y+2z}$
$\Rightarrow$ $\frac{16}{2x+y+z}+\frac{16}{x+2y+z}+\frac{16}{x+y+2z}\leqslant 16$
.... đpcm
giải thích hộ mình cái đầu tiên sao được như thế đc k ậ ^^
 

iceghost

Cựu Mod Toán
Thành viên
TV BQT xuất sắc nhất 2016
20 Tháng chín 2013
5,018
7,484
941
TP Hồ Chí Minh
Đại học Bách Khoa TPHCM
Ngoài ra có thể chứng minh một cách đơn giản $$\dfrac1{x} + \dfrac1{x} + \dfrac1{y} + \dfrac1{z} \geqslant 4\dfrac{4}{\sqrt[4]{x\cdot x \cdot y \cdot z}} \geqslant \dfrac{16}{x+x+y+z}$$
 
Last edited by a moderator:
Top Bottom