[TEX](1+cotx+\frac{1}{sinx})(1+cotx-\frac{1}{sinx}) = 2cotx[/TEX]
\[\begin{array}{l}
(1 + cotx + \frac{1}{{sinx}})(1 + cotx - \frac{1}{{sinx}}) = 2cotx\\
\leftrightarrow \left( {\frac{{\sin x + \cos x + 1}}{{\sin x}}} \right)\left( {\frac{{\cos x + \sin x - 1}}{{\sin x}}} \right) = 2\cot x\\
\leftrightarrow \frac{{{\mathop{\rm sinxcosx}\nolimits} + si{n^2}x - \sin x + {{\cos }^2}x + \sin x\cos x - \cos x + \cos x + \sin x - 1}}{{{{\sin }^2}x}} = 2\cot x\\
\leftrightarrow \frac{{2\sin x\cos x}}{{{{\sin }^2}x}} = 2{\mathop{\rm cotx}\nolimits} \leftrightarrow \frac{{\cos x}}{{\sin x}} = \cot x
\end{array}\]