Ta có: $\left\{\begin{matrix}sinB+sinC=2sinA & \\tanB+tanC=2tanA &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R} & \\\dfrac{1}{cotB}+\dfrac{1}{cotC}=2.\dfrac{1}{cot} &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\\dfrac{4S}{a^2+c^2-b^2}+\dfrac{4S}{a^2+b^2-c^2}=2.\dfrac{4S}{b^2+c^2-a^2} &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}=2.\dfrac{1}{b^2+c^2-a^2} &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\a^2(b^2+c^2-a^2)=(a^2+b^2-c^2)(a^2+c^2-b^2) &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\2a^4-(b^2-c^2)^2-a^2(b^2+c^2)=0 &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\2a^4-(b-c)^2.4a^2-a^2(b^2+c^2)=0 &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\2a^2-(b-c)^2.4-(b^2+c^2)=0 &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\bc-a^2-2(b-c)^2=0 &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\9(b-c)^2=0 &\end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}b+c=2a & \\b=c &\end{matrix}\right.$
\Leftrightarrow $a=b=c$
\Rightarrow đpcm.