Ta có \cos^2A=1-sin^2A
cos^2A+cos^2B+cos^2C = 1- 2 cosA. cosB.cosC \Leftrightarrow sin^2A+sin^2B+sin^2C=2(1+cosA.cosB.cosC )
Ta có :
(sinA+sinB+sinC)^2-2(\sum {sinAsinB})(*)
Mà sinA+sinB+sinC=4cos\frac{A}{2}.cos\frac{B}{2}.cos \frac{C}{2}
(*) \Rightarrow 16.cos^2\frac{A}{2}.cos^2\frac{B}{2}.cos^2.\frac{C }{2} - 2(\sum {sinAsinB})
\Leftrightarrow 16.\frac{1+cos^2A}{2}.\frac{1+cos^2B}{2}. \frac{1+cos^2C}{2} - 2(\sum {sinAsinB})
\Leftrightarrow 2(1+cosAcosBcosC+cosA+cosB+cosC+\sum{cosAcosC-sinAsinB})
\Leftrightarrow2(1+cosAcosBcosC+cosA+cosB+cosC+ \sum{cos(A+B)})
\Leftrightarrow 2(1+cosAcosBcosC+cosA+cosB+cosC-cosA-cosB-cosC})=2(1+cosAcosBcosC) đpcm