[Toán 10] Chứng minh đẳng thức lượng giác.

N

ngoc.xanh97

$Sin^3x+ \sqrt{3} cos^3x+cos(\frac{5\pi}{2}-x)cos^2x- \sqrt{3} sin(\frac{3\pi}{2}-x).sin^2x$

$=sin^3x+\sqrt{3} cos^3x+cos(2\pi+\pi/2-x)cos^2x-\sqrt{3} sin (\pi+\pi/2-x).sin^2x$

$=sin^3x+ \sqrt{3} cos^3x+sinxcos^2x+\sqrt{3} sin(\pi/2-x).sin^2x$

$=sin^2sinx+\sqrt{3}cos^2xcosx+sinxcos^2x+\sqrt{3} cosx.sin^2x$

$=sinx(sin^2x+cos^2x)+\sqrt{3} cosx(cos^2x+sin^2x)$

$=sinx+\sqrt{3} cosx$


$2cos(x-\pi/6)$

$=2cos(\pi/6-x)$

$=2cos(\pi/2-\pi/3-x)$

$=2sin(\pi/3+x)$

$=2(sin\pi/3.cosx+cos\pi/3.sinx)$

$= \sqrt{3} cosx+sinx$

→ đpcm
 
Last edited by a moderator:
Top Bottom