Toán [Toán 10] Chứng minh BĐT

Triêu Dươngg

Cựu Phụ trách nhóm Vật lí
Thành viên
TV BQT tích cực 2017
28 Tháng một 2016
3,897
1
8,081
939
Yên Bái
THPT Lê Quý Đôn <3
Bóc tem 1 bài trc nhé! =))
[tex]5,(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\geq 64[/tex]
Ta có: [tex]A=(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=\frac{(a+1)(b+1)(c+1)}{abc}[/tex]
[tex]A=\frac{(a+b+a+c)(a+b+b+c)(a+c+b+c)}{abc}[/tex]
[tex]\geq \frac{8(\sqrt{ab}+\sqrt{ac})(\sqrt{ab}+\sqrt{bc})(\sqrt{ac}+\sqrt{bc})}{abc}[/tex]
[tex]\geq \frac{64\sqrt{a^2bc}.\sqrt{ab^2c}.\sqrt{abc^2}}{abc}[/tex]
[tex]\geq \frac{64abc}{abc}=64 (dpcm)[/tex]
* Áp dụng BĐT $AM-GM$
Dấu "=" xảy ra [tex]\Leftrightarrow a=b=c=\frac{1}{3}[/tex]
 
Top Bottom